Monomial Representations for Grobner Bases Computations*

Olaf Bachmann

Hans Schonemann

Centre for Computer Algebra
Department of Mathematics
University of Kaiserslautern
Kaiserslautern, Germany
{obachman, hannes}@mathematik.uni-k1.de
http://www.mathematik.uni-k1.de/~{obachman, hannes}

Abstract

Monomial representations and operations for Grébner bases
computations are investigated from an implementation point
of view. The technique of vectorized monomial operations is
introduced and it is shown how it expedites computations of
Grobner bases. Furthermore, a rank-based monomial rep-
resentation and comparison technique is examined and it is
concluded that this technique does not yield an additional
speedup over vectorized comparisons. Extensive benchmark
tests with the Computer Algebra System SINGULAR are used
to evaluate these concepts.

1 Introduction

The method of Grébner bases (GB) (see, for example, [8]
for an introduction) is undoubtly one of the most impor-
tant and prominent success stories of the field of Computer
Algebra. Starting in the 1960’s, an unsolved problem has
developed into an essential computational tool with a great
variety of applications and more and more powerful imple-
mentations. The heart of the GB method are computations
of Grébner or Standard bases with the Buchberger algorithm
or descended variants thereof (we call such computations GB
computations, for short).

Unfortunately, the Buchberger algorithm and its variants
have a worst case exponential time and space complexity
[3]- Consequently, GB computations have limited practical-
ity and tend to tremendously long running times and con-
sumptions of huge amounts of memory. For these reasons,
a large amount of work has been done to try to improve the
(time and space) efficiency of GB computations (see, for ex-
ample, [6, 7, 9]). Most of this work resulted in algorithmic
improvements which led to more manageable computations
for many classes of problems. Our approach to improving
the efficiency of GB computations is somewhat different:
instead of trying to improve algorithmic aspects of GB com-
putations we take the algorithms more or less as they are
and study efficient ways to implement them.

*Work reported herein has been supported in part by the Deutsche
Forschungsgemeinschaft (DFG).
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. ISSAC’98,
Rostock, Germany. © 1998 ACM 1-58113-002-3/ 98/ 0008 $5.00

309

Analyzing GB computations from an implementation
point of view leads to many interesting questions. For ex-
ample: What is the best way to implement coefficient arith-
metic? How should polynomials and monomials be repre-
sented and their operations be implemented? How should
memory management be realized?

Apart from some exceptions (for example, [1]), these
questions have not yet received a lot of systematic research
and literature attention. Nevertheless, work in this direc-
tion can be very fruitful, as we report in this article. As a
start, we concentrate on monomials — the most frequently
used primitive data in GB computations — and show that
only improvements in the representation of and operations
on monomials can lead to significant efficiency gains of GB
computations.

In Section 2 we discuss the basics of monomial operations
and representations. In Section 3 we investigate vectorized
monomial operations, which handle more than one exponent
at a time. In section 4 we examine a rank-based represen-
tation of monomials, which encodes the exponent vector as
one single integer for the purpose of expediting monomial
comparisons. In both of these sections, we give extended
sets of timings which show the effects of the respective con-
cepts. Finally, we summarize our results in Section 5 and
give more details about our used benchmark examples in the
Appendix.

We used the Computer Algebra System (CAS) SINGU-
LAR [10] to implement, examine and benchmark the tech-
niques discussed in this paper. SINGULAR is CAS for poly-
nomial computations with special emphasize on the needs
of Commutative Algebra, Algebraic Geometry, and Singu-
larity Theory. It features, among others, one of the fastest
and most general implementation of GB computations and
is therefore an ideal test-bed for our experiments.

2 Basic monomial operations and representations

Given an integer n > 0 we define the set of exponent vectors
M, by {a =(au,...,an)|e € N"}. Notice that monomials
usually denote terms of the form cz{'...z5". However,
in this paper we do only consider the exponent vector of a
monomial and shall therefore use the words exponent vector
and monomial interchangeably (i.e., we identify a monomial
with its exponent vector).

We furthermore use Greek letters to denote monomials
and the letter n to denote the a—priory given length of mono-



mials (which is the number of variables in the corresponding
polynomial ring).

Monomials play a central role in GB computations. In
this section, we describe the basic monomial operations and
discuss basic facts about monomial (resp. polynomial) rep-
resentations for GB computations.

2.1 monomial operations

The basic monomial operations in GB computations are:

1. Computations of the degree (resp. weighted degree):
the degree (resp. weighted degree) of a monomial «
is the sum of the exponents deg(a) := Y7 | a; (resp.
the weighted sum with respect to a weight vector w:
deg(a) := 3% | o w;).

2. Test for divisibility:

Ollﬂ - Vie {1n} Toy < ﬂz

3. Addition of two monomials:
vy:=a+BwithVie{l.n}:v=a +5

4. Comparison of two monomials with respect to a mono-
mial ordering.

A monomial ordering > (term ordering) on the set of
monomials M, is a total ordering on M, which is compati-
ble with the natural semigroup structure, i.e., & > /3 implies
¥+ a >+ 3 for any v € M,. A monomial ordering is a

well-ordering if (0,... ,0) is the smallest monomial. We fur-
thermore call an ordering negative if (0,... ,0) is the largest
monomial.

Robbiano (cf.[12]) proved that any monomial ordering
> can be defined by a matrix A € GL(n,R): o« > 3 —
Aaq >0 AB. Matrix—based descriptions of monomial order-
ings are very general, but have the disadvantage that their
realization in an actual implementation is usually rather
time—consuming. Therefore, they are not very widely used
in practice.

Instead, the most frequently used descriptions of or-
derings have at most two defining conditions: a (possibly
weighted) degree and a (normal or reverse) lexicographical
comparison. We call such orderings simple orderings. The
most important simple orderings (and their SINGULAR ab-
breviations) are: lexicographical (Ip): used to eliminate vari-
ables and solve equations; (weighted) degree reverse lexico-
graphical (dp): in general the most efficient one to compute
a GB (as shown in [4]); (weighted) degree lexicographical
(Dp); negative lexicographical ordering (Is); (weighted) neg-
ative degree reverse lexicographical (ds): also called tangent
cone ordering; and (weighted) negative degree lexicographi-
cal (Ds).

For monomials «, 3 € M, let

LifFi:oa=51,...,06-1=0i—1, ;>0
Lex(a,3) = ¢ 0,if a =3
—1, otherwise,
Lif i @n=P0n, .. ,ci—1=0i—1,0:<Fs
Revlex{(a,8) = ¢ 0,ifa =3

—1, otherwise,

1,if deg(a) > deg(B)
0,if deg(a) = deg()
—1, otherwise.

Deg(a, 8) =

Then we can define o > 3 for the above mentioned simple
monomial orderings by:

310

Ip: Lex(a,3) =1

Is: Lex(e, 8) = -1
Dp: Deg(e, 3)=1, or Deg(e,8) =0 and Lex(e, 3)=1
Ds: Deg(a, 3)=—1, or Deg(c, 3) =0 and Lex(a, 3)=1

dp: Deg(a, 3)=1, or Deg(e,3)=0 and RevLex(c, 3)=1
ds: Deg(a, 3)=—1, or Deg(e, 3) =0 and RevLex(a, 3)=1

We furthermore call a monomial ordering > a degree
based monomial ordering if V «,8 € M, : deg(e) >
deg(8) = a > 8 (e.g., Dp and dp and their weighted rela-
tives are degree based orderings).

Due to the nature of the GB algorithm, monomial oper-
ations are by far the most frequently used primitive oper-
ations. For example, monomial comparisons are performed
much more often than, and monomial additions at least as
often as, arithmetic operations over the coefficient field. The
number of divisibility tests depends very much on the given
(input) ideal-generators, but is usually very large, as well
(see also Table 1).

Nevertheless, whether or not monomial operations dom-
inate the running time of a GB computation depends on the
coefficient field of the underlying polynomial ring: mono-
mial operations are certainly run-time dominating for fi-
nite fields with a small' characteristic (e.g., integers modulo
a small prime number), since an arithmetic operation over
these fields can usually be realized much faster than a mono-
mial operation. However, for fields of characteristic 0 (like
the rational numbers), GB computations are usually dom-
inated by the arithmetic operations over these fields, since
the time needed for these operations is proportional to the
size of the coefficients which tend to grow rapidly during a
GB computation.

Therefore, improvements in the efficiency of monomial
operations will have less of an impact on GB computations
over fields of characteristic 0.

2.2 monomial representations

Ag a first question, one might wonder which kind of polyno-
mial (and, consequently, monomial) representation is best
suited for GB computations. Although there are sev-
eral alternatives to choose from (e.g., distributive/recursive,
sparse/dense), it is generally agreed upon that efficiency
considerations lead to only one real choice: a dense dis-
tributive representation. That is, a polynomial is stored as
a sequence of terms where each term consists of a coeffi-
cient and an array of exponents which encodes the respec-
tive monomial. With such a representation, one has not only
very efficient access to the leading monomial of a polynomial
(which is the most frequently needed part of a polynomial
during GB computations), but also to the single (exponent)
values of a monomial.

Now, what type should the exponent values have? Effi-
ciency considerations lead again to only one realistic choice,
namely to fixed-length integers whose size is smaller or equal
to the size of a machine word. While assuring the most
generality, operations on and representations of arbitrary—
length exponent values usually incur an intolerable slow-
down of GB computations. Of course, a fixed-length ex-
ponent size restricts the range of representable exponent
values. However, exponent bound restrictions are usually
not very critical for GB computations: on the one hand,
the (worst case) complexity of GB computations grows ex-
ponentially with the degree of the input polynomials, i.e.,

1say, smaller than the maximal representable machine integer, i.e.
smaller than LONG_MAX



large exponents usually make a problem practically uncom-
putable. On the other hand, checks on bounds of the expo-
nent values can be realized by degree bound checks in the
outer loops of the GB computation (e.g., during the S—pair
selection) which makes exponent value checks in subsequent
monomial operations unnecessary.

Furthermore, the degree of a monomial is so often needed
during GB computations, that, as experience has shown,
it is advantageous to add an additional degree field to the
monomial data structure.

Ag an illustration, and for later reference, we show below
SINGULAR’s internal Term_t data structure:
struct Term_t

{
Term_t* next;
void* coef;
long order;
Exponent_t expl[1];
3

Following the arguments outlined above, a SINGULAR poly-
nomial is represented as a linked list of terms, where each
term consists of a coefficient (implemented as a hidden type:
could be a pointer or a long) and a monomial. A monomial
is represented by its exponent vector, together with its de-
gree field (order). The data type of the exponent values
(Exponent_t) can be set at configuration time with the re-
striction that it must be an integer type whose size is a mul-
tiple of the word size of the used machine®. The size of the
Term_t structure is dynamically set at run—time, depending
on the number of variables in the current polynomial ring.

Based on a monomial representation like SINGULAR’S,
the basic monomial operations are “traditionally” imple-
mented by straightforward realizations of their definitions.
Only monomial additions need also to update the order
field of the result monomial, which is simply accomplished
by adding the degree values of the operands (since the values
of the order—field are additive).

3 Vectorized monomial operations

The main idea behind what we call vectorized monomsial op-
erattons is the following: provided that the size of the ma-
chine word is a multiple (say, m) of the size of one exponent,
we perform monomial operations on machine words, instead
of directly on exponents. By doing so, we process a vector
of m exponents with word operations only, thereby reducing
the length of the inner loops of the monomial operations and
avoiding non-aligned accesses of exponents.

The PoSSo library [11] already uses parts of this idea
to speed up monomial additions, assignments, and tests for
equalities, but has not (yet?) carried these ideas over to the
much more time-critical monomial comparisons and divisi-
bility tests.

The details of this technique are based on the following
lemma whose proof is straightforward:

Lemma 1: Let se,m € N, and & = (o, ... ¥m-1),8 =
(ﬂo,..;\ﬂm_l) € M,, with a;,8 < 2°°7}, s, = sem and
a,b,a,b,70,...Ym=1,00...0m—1 € N with v;,8; < 2% s.t.

a = ao+a12% 4 ... 4 am_120m e,

Bo+ B12% + ...+ B_g2(mT Vs

2By default, we declare Exponent t to be of type short which seems
to be a good alternative between flexibility and efficiency.

311

Qm—1 + Olm—228€ + ...+ aoz(m—l)se’
ﬂm—l + ﬂm—?zse +... +ﬂ02(m—l)se’
Yo+ 112 H o F o1 20T
do+612° +... + Jm_lz(m‘l)se.

b+a (mod 2°*

a
b
)
b—a (mod 2°*)

Then the following holds:

b—a (mod2°*) < 2™™' iff Lex(a,8) =1 (1)
b—a (mod2°*)<2*~! iff RevLex(a,8) = —1(2)
(Yo, s Ym-1) = a+p (3)
VO<i<m:8 <2°7" iff «|p (4)

Lemma 1 shows how the monomial operations on the
right-hand sides of (1) - (4) can be “vectorized”, such that,
on a 2’s complement machine with word-size s,,, the checks
(resp. operations) on the left hand sides of (1) — (4) can be
performed in at most three single machine instructions (see
the source code examples below for further details).

However, before Lemma 1 can be applied in an actual
implementation, some technical difficulties have to be over-
come:

Firstly, stricter bounds on the values of the single expo-
nents have to be assured (i.e., the exponent values need to
be less than 2°¢~! ingtead of 2°¢).

Secondly, the condition s,, = se m implies that the total
length of the exponent vector has to be a multiple of the
word-size which requires that (—n)(mod m) “unnecessary”
exponents (whose value is set to and always kept at 0) might
have to be added to the exponent vector .

Thirdly, and most importantly, the order and arrange-
ment of the exponents within the exponent vector has to be
adjusted, depending on the monomial ordering and on the
endianess of the used machine. On big-endian machines, the
order of the exponents has to be reversed for reverse lexico-
graphical orderings whereas on little-endian machines, the
order of the exponents has to be reversed for lexicograph-
ical orderings. In practice, this fact can be hidden behind
appropriate macro (or inline) definitions for accessing sin-
gle exponents. In our implementation, we used a global
variable called pVarOffSet and implemented the exponent
access macro as follows:

#define pGetExp(p, i) \
p->expl[(pVar0ffSet 7 pVarOffSet - i : i)]

Provided that n is the number of variables of the current
ring then we set the value of pVarOffSet as follows:

type of machine
type of ordering ‘ big—endian little—endian
lexicographical 0 n—1
reverse lexicographical ‘ n—1 0

Some source code fragments can probably explain it best:
Figure 1 shows (somewhat simplified) versions of our im-
plementation of the vectorized monomial operations. Some
explanatory remarks are in order:

LexSgn and 0rdSgn (used in MonComp) are global vari-
ables which are used to appropriately manipulate the return
value of the comparison routine and whose values are set as

follows:
|lp s Dp Ds dp ds
OrdSgn | I -1 I -1 1 -1
LexSgn | 1 -1 1 1 -1 -1



inline long MonComp(Term_t* a, Term_t* b)

{// return 0, if a =D
// >0, if a > b; < 0, if a < b
long d = a->order - b->order; //check degree
if (d) return d*0rdSgn;

#ifdef WORDS_BIGENDIAN //check exponents

for (long i = 0; i<n_w; i++)
#else

for (long i = n_w -1; i; i--)
#endif

{

d=((long*)a->exp) [i]-((long*)b->exp) [i];
if (d) return d*LexSgn;
}
return 0;
}
inline void MonAdd(Term_t* c, Term_t* a, Term_t* b)
{// Setc=a+hb
for (long i=0; i<n_w; i++)
((long*) c->exp) [i] =
((long*)a->exp) [i] + ((long*)b->exp) [i];
c->order = a->order + b->order // update order
}
inline bool MonDivBy(Term_t* a, Term_t* b)
{ // return true, if a divides b
// false, otherwise
#if SIZEQOF_LONG ==
#if SIZEOF_EXPONENT ==
#define DIV_MASK 0x80808080
#else // SIZEOF_EXPONENT
#define DIV_MASK 0x80008000
#endif
#else // now assume SIZEOF_LONG =
// define DIV_MASK similarly
#endif
for (long i=0; i<n_w; i++)

{

n
[o]

long d = ((long*) b->exp) [il
- ((long*) a->exp)[il;
if (d & DIV_MASK) return false;
}
return true;

}
Figure 1: Vectorized monomial operations in SINGULAR

Together with the above described order-dependent arrange-
ment of the exponents within the exponent vector, these
variables allow us to reduce monomial comparisons for all
simple monomial orderings to one single routine.

n_w is a global variable denoting the length of the ex-
ponent vectors in machine words (i.e., if s, is the size of a
machine word, s. the size of an exponent, n the number of
variables, then n,, = [nse/sw]).

Notice that MonAdd works on three monomials and it is
most often used as a “hidden” initializer (or, assignment),
since monomial additions are the “natural source” of most
new monomials.

Our actual implementation contains various, tediously to
describe, but more or less obvious, optimizations (like loop
unrolling, use of pointer arithmetic, replacement of multi-
plications by bit operations, etc). We apply, furthermore,
the idea of “vectorized operations” to monomial assignments
(i.e. copies) and equality tests, too. However, we shall not
describe here the details of these routines, since their im-

312

plementation is more or less obvious and they have less of

an impact on the running time than the basic monomial

operations.

So much for the theory, now let us look at some ac-
tual timings: Table 1 shows various timings illustrating the
effects of the vectorized monomial operations described in
this section. In the first column, we list the used examples
— details about those can be found in the Appendix. All
GB computations were done using the degree reverse lexi-
cographical ordering (dp) over the coefficient field Z/32003.
We measured the following times (all in seconds):
ti.0 Running time of SINGULAR version 1.0 which uses the

straightforward implementation of monomial opera-
tions.

tn,sy tn,e Running time of SINGULAR without vectorized
monomial operations and exponents of type short (for
tns) and char (for t, )%

ts, tc Running time of SINGULAR with vectorized monomial
operations and exponents of type short (for £,) and
char (for ¢.).

Y%mon,%comp,%div,%add Percentage of the running
time (of ¢,,s runs) spent in basic monomial opera-
tions, monomial comparisons, divisibility tests, and ad-
ditions, respectively (i.e., %mon = %comp + %div +
%add)

Before evaluating these numbers, we should like to men-
tion that running the same tests on different machines
and/or with different simple monomial orderings leads to
a similar picture (see also [2] for more timings).

Now, what do these numbers tell us?

Firstly, they support our assertion that for GB compu-
tations over finite fields of small characteristic, the running
time is largely dominated by basic monomial operations
(see column %mon). However, in which of the (three) ba-
sic monomial operations the most time is spent varies very
much from example to example (compare, e.g., line “gonnet”
with line “ecyclic 6”).

Secondly, and most importantly: the impact of the
vectorized monomial operations is quite substantial (see
columns ¢, . /¢, tnc/tc which show the speedup gained by
vectorized operations). As expected, the larger the ratio
M = Sy /e (i, the number of exponents packed in one ma-
chine word), the more speedup is usually gained (compare
column ¢, . /t; and t,,./t.). However, notice that we can-
not conclude a direct correlation between the percentage of
time spent in monomial operations and the efficiency gains
of vectorized operations. This is due to the fact that the
number of inner loop iterations (and, hence, reduction of
inner loop iterations) for comparisons and divisibility tests
is not constant, but depends on the input monomials.

Thirdly: as we would expect, the more exponents are en-
coded into one machine word, the faster the GB computation
is accomplished (see the ¢,/f. column). This has two main
reasons: first, more exponents are handled by one machine
operation; and second, less memory is used, and therefore,
the memory performance is increased (e.g., the number of
cache misses is reduced). However, we also need to keep in
mind that the more exponent are encoded into one word,
the smaller are the upper bounds on the value of a single
exponents. This is especially crucial for computations with

3Using our previously introduced terminology, we have s. = 2 for
tn,s (resp. 4 for ¢, ,c); and m = 8, /sc = 2 (resp. 4 for t, ) on a
32-bit machine (like the HP C160, or Pentium Pro) and m = 4 for
tn,s (resp. 8 for ¢, ) on a 64-bit machine (like the DEC Alpha).



Example tn,s %mon %comp %div  %add s fme fs RO tLo
ts te te tn,s te
ecyclic 6 3.9 79.4 68.9 1.6 8.8 1.7 20 1.3 1.3 2.8
homog cyclic 7 125.8 72.5 33.6 11.8 27.1 1.5 1.9 1.3 1.3 2.6
homog cyclic 6 0.9 69.5 30.5 13.3 25.8 1.6 1.9 1.3 1.3 2.6
katsura 7 8.8 71.5 41.5 3.7 26.3 1.6 1.9 1.2 1.3 2.6
rcyclic 15 53.2 76.2 29.6 26.0 20.6 1.6 20 14 1.2 2.5
rcyclic 14 22.9 76.0 28.1 28.5 19.4 1.5 1.9 1.3 1.2 2.5
rcyclic 16 106.4 78.2 26.5 30.7 21.0 1.6 20 14 1.2 2.5
rcyclic 19 740.0 80.3 29.5 29.9 20.9 1.5 1.9 1.4 1.2 2.5
rcyclic 18 396.5 80.0 29.4 29.2 21.4 1.5 1.9 1.4 1.2 2.4
rcyclic 13 10.2 74.8 27.6 26.6 20.7 1.5 1.8 1.3 1.2 2.4
rcyclic 12 4.3 74.7 28.4 29.8 16.5 1.6 1.9 1.2 1.2 2.4
rcyclic 11 1.6 67.4 22.9 24.7 19.8 1.6 1.8 1.2 1.2 2.4
bjork 8 4.0 67.8 32.0 13.2 22.5 1.5 1.8 1.2 1.3 2.3
rcyclic 17 210.9 78.2 26.5 30.3 21.4 1.5 1.8 1.3 1.2 2.3
gerhard 1 1.7 68.7 48.1 4.5 16.0 1.3 1.5 1.2 1.5 2.3
katsura 8 94.3 73.1 45.1 3.5 24.5 1.5 1.7 1.2 1.3 2.3
homog 2mat3 126.0 81.9 77.5 1.9 2.5 1.3 1.5 1.4 1.2 2.2
cyclic 7 190.0 66.9 31.0 11.2 24.7 1.4 1.8 1.3 1.2 2.2
rcyclic 10 0.5 53.7 16.2 20.0 17.5 1.6 1.7 1.1 1.2 2.2
cyclic 6 0.7 61.6 26.8 16.3 18.6 1.4 1.7 1.2 1.2 2.1
homog gonnet 125.4 76.8 43.0 31.5 2.2 1.5 1.7 1.2 1.1 2.1
gerhard 2 13.8 72.3 54.8 3.2 14.3 1.3 1.4 1.1 1.4 2.1
homog alex 2 12.9 71.7 58.2 4.8 8.8 1.3 1.4 1.1 1.4 2.0
schwarz 11 131.6 65.4 30.6 18.4 16.5 1.3 1.6 1.3 1.2 2.0
2mat3 123.1 80.2 75.7 1.9 2.6 1.2 1.4 1.4 1.2 2.0
schwarz 10 21.9 62.5 28.2 18.4 15.9 1.3 1.5 1.2 1.2 2.0
cohn2 9.7 64.4 29.7 4.1 30.6 1.4 1.5 1.1 1.2 1.9
gerhard 3 24.4 67.1 45.5 13.1 8.6 1.3 1.3 1.1 1.3 1.8
symmetric 6 60.6 68.0 25.6 14.5 28.0 1.4 1.4 1.1 1.2 1.8
schwarz 9 3.3 55.5 23.0 20.0 12.5 1.3 1.4 1.1 1.2 1.8
alex 2 7.1 63.6 52.1 3.3 8.2 1.3 1.4 1.1 1.2 1.8
schwarz 8 0.6 50.6 24.7 14.6 11.2 1.3 1.5 1.1 1.1 1.7
ecyclic 7 1076.4 86.4 84.2 0.3 2.0 1.2 1.4 1.2 1.1 1.6
alex 3 2.0 65.9 53.5 7.7 4.7 1.3 1.3 1.1 1.2 1.6
homog alex 3 2.0 66.2 47.2 14.8 4.1 1.2 1.2 1.1 1.3 1.6
gonnet 1.2 43.8 6.2 34.2 3.4 1.1 1.3 1.2 1.1 1.5
averages
Pentium Pro 103.3 69.8 38.4 15.6 15.8 1.4 1.6 1.2 1.2 2.2
HP C160 125.4 69.0 41.7 17.9 9.5 1.2 1.5 1.3 1.8 2.9
DEC Alpha 221.4 69.8 37.7 16.1 16.0 1.7 1.7 1.2 1.1 2.3

Table 1: Detailed timings for vectorized monomial operations: SINGULAR compiled with gcc version 2.7.2 for a Pentium Pro
200 (32 bit, little-endian) running Linux and average of timings for a HP C160 (32 bit, big-endian) running HP-UX 10.20

and a DEC Alpha (64 bit, little endian) running Linux.

char exponents, since these require that an exponent may
not be larger than 127. Ideally, we would like to “dynami-
cally” switch from one exponent size to the next larger one,
whenever it becomes necessary. With SINGULAR, we cannot
do this yet, at the moment, but we intend to implement this
feature in one of the next major upgrades.

Fourthly: we would like to point out that the only differ-
ence between the SINGULAR versions resulting in ¢1.0 and ¢,
is that monomial comparisons for the different orderings are
not reduced to one inlined routine but instead are realized
by function pointers (and, therefore, each monomial compar-
isons requires a function call). Hence, column ¢, ¢/, s shows
that already the in—place realization of monomial compar-
isons results in a considerable efficiency gain which by far
compensates the additional overhead incurred by the addi-
tional indirection for accessing one (single) exponent value
(i.e., the overhead incurred by the pGetExp macro shown
above).

Last, but not least, the combination of all these factors
leads to a rather significant improvement of our newly re-
leased SINGULAR version 1.2 over the “old” SINGULAR ver-
sion 1.0 (see column t1.0/t.).

313

4 Rank-based monomial representation

A different monomial representation is what we call the
rank-based representation. This monomial representations
was, to the best of our knowledge, first developed for and
used in the CAS Macaulay [5]. The main idea behind this
monomial representation stems from the following property
of a degree based ordering > on My:

Vme M, :#{m €M, :1<m <m}<oco (5)

Therefore, it is possible to bijectively enumerate the
monomials in the order given by the monomial ordering and
to represent an entire monomial by just a single integer,
which we call the rank of a monomial.

The bijective maps between the monomials and the inte-
gers depend on the used monomial ordering: for the degree
reverse lexicographic ordering it is given by the following
lemma:

Lemma 2: Let a« € M, and rq, : M, — N given by

. i Z;zlaj-l-i—l
rap(e@) == ; ( : .
Then the following holds:
Vo, € My i rap(a) > rap(B) — a >ap B
Va,B € My : rap(a) =rap(B) — a= 4.

(6)



A similar bijective map can be given for the ordering Dp
(degree lexicographic). For negative orderings like Ds or ds
the same idea can be exploited but it is necessary to change
the signs since the zero monomial is, with respect to these
orderings, the largest, not the smallest monomial.

Using the rank-based representation for monomials,
monomial comparisons can very easily and efficiently be re-
alized by simply comparing their corresponding ranks (we
also call such monomial comparisons simply rank-based com-
parisons). Furthermore, a pure rank-based polynomial rep-
resentation is very compact, i.e. requires an almost minimal
amount of memory. Unfortunately, we have to pay for these
advantages with the following difficulties:

(i) Monomial additions and divisibility tests can not be eas-
ily accomplished, since the bijective enumeration maps
are neither additive nor do they allow any direct con-
clusions about monomial divisibility.

(ii) An unrestricted realization of the enumeration maps
would require that arbitrary precision integers are used
which would in turn result in considerable performance
losses. On the other hand, restricting the range of the
enumeration maps to machine integers, imposes a limit
on the largest representable monomial (which we also
call the mazimal integer monomial). Clearly, this limit
depends on the word-length of the machine and on
the number of variables of the polynomial ring. For
example, using a 32-bit integer for the realization of (6)
restricts the degree of the maximal integer monomials
as shown in the following table:

variables | 3 4 5 7 10 15 20 25
max. deg | 2340 471 186 66 31 17 12 9

(iii) Non-degree orderings (like the lexicographical or neg-
ative lexicographical ordering) do not admit a bijective
enumeration map which is compatible with the mono-

mial ordering, since they do not enjoy (5).
Problem (i) is overcome in the Macaulay system by keeping

two representations of the the leading monomial of a poly-
nomial (the integer representation and the exponent vector
representation) and by computing the inverse of the enumer-
ation map for the non-leading monomials of a polynomial.

Problem (ii) is overcome by restricting the input polyno-
mials to being homogeneous and by Macaulay’s “infamous”
degree bound messages and enforcement mechanisms.

Problem (iii) is simply ignored by Macaulay — no com-
putations with non—degree orderings are possible.

In SINGULAR, we choose a slightly different way to over-
come problems (i) — (iii): first, we always keep the expo-
nent vector representation of a monomial. And, second, if a
monomial is smaller than the maximal integer monomial, we
store its rank in the negative range of the order field (i.e.,
a->order + INT_MAX yields the rank of the monomial a). If,
on the other hand, a monomial is larger than the maximal
integer monomial, then its order field contains (as before)
the (positive) degree of the monomial.

Based on such a data representation, monomial compar-
isons can simply be accomplished as follows:
inline long MonComp(Term_t* a, Term_t* b)

{
if (a->order != b->order)
return (a->order - b->order);
// a->order==b->order: are we already done?
if (a->order < 0) return 0; // monom’s are equal
// now compare using the exponent values,
// assuming the degrees are equal ...

314

Notice that we do not need to distinguish between the
two different interpretations of the order field: if we com-
pare a monomial which is smaller than the maximal inte-
ger monomial (order value is negative) with one that is
larger (order value is positive), then the different signs of
the order fields result in an immediate and correct return
of the monomial comparison. Therefore, only a sign—check
(for the case of equal order fields) needs to be added to
the previously given monomial comparison routines to have
them take advantage of ranks.

Since we always keep the exponent vector representa-
tion alongside with the ranks, monomial divisibility tests
and additions can be accomplished as usual, except that we
need to recompute and set the order field at the end of the
monomial addition routine. For monomials smaller than the
maximal integer monomial, this basically amounts to com-
putations of the respective ranks. We accomplish the latter
by a simple implementation of (6) using a pre—computed
table of binomial coefficients.

As with vectorized monomial additions, overflow or de-
gree checks can largely be moved to the outer loops of the
GB computations so that we can almost always avoid the
costly checks on whether or not the sum of two monomials
is smaller than the maximal integer monomial.

As a summary, we can conclude that with a relatively
small effort, it is possible to extend a “traditional” expo-
nent vector—-based monomial representation so that it can
fully take advantage of ranks while, at the same time, the
limitations and efficiency bottlenecks of the Macaulay sys-
tem (degree bounds, no support for non-degree orderings,
repeated inverse rank computations) can be avoided.

But now again, let us examine some timings (Table 2)
to see how much all that buys us in practice: we again used
the examples of the Appendix and performed all GB com-
putations using the degree reverse lexicographical ordering
(dp) over the coefficient field Z/32003. We obtained timings
for three basic SINGULAR configurations: char and short
exponents with vectorized monomial operations, and short
exponents with “traditional” (i.e., not vectorized) monomial
operations. For each of these “conventional” configurations,
we also obtained a SINGULAR version which uses rank-based
comparisons and measured the following:

t<,tr <: the time spent in monomial comparisons, only
(t<—conventional comparisons, t, <-rank-based com-
parisons).

%R, Y%comp: the percentage of time spent in rank com-
putations (%R) and in conventional monomial compar-
isons (Y%comp).

t,t.: the overall running time for the GB computation
(t-conventional configuration, #,-rank-based configu-
ration). For the conventional configuration, these tim-
ings are the same as those of Table 1.

And again, let us see what we can conclude from these
experiments:

Firstly, rank-based comparisons are realized substan-
tially faster than traditional and vectorized monomial com-
parisons (see the ¢« /¢, « columns), except in such examples,
where a majority of the monomials is larger than the maxi-
mal integer monomial (examples marked with a ).

Secondly, the time spent for rank computations during
monomial additions is significant, and cannot be neglected
(see the %R columns).

Thirdly, whether or not the time saved by rank-based
comparisons pays off against the additional time spent for



exponent type char short short
monomial operations vectorized vectorized not vectorized
Example i< %R %comp i i< %R %comp i i< %R %comp i
tr.< tr | tr< tr | tr< tr
2mat3 1.3 7.6 69.0 1.1 1.7 6.5 744 14 1.9 5.0 76.3 1.6
homog gonnet 1.3 6.7 345 1.0 1.8 4.7 380 1.1 2.7 4.8 439 1.3
homog alex 2 1.3 9.7 51.1 0.9 1.4 8.5 51.2 1.0 1.8 7.8 57.4 1.2
alex 2 1.3 7.9 52.1 0.9 1.1 7.4 49.0 1.0 1.6 7.5 56.8 1.2
alex 3 1.3 5.2 47.8 1.0 1.0 2.9 49.1 0.9 1.4 2.8 53.7 1.2
gerhard 1 1.4 15.6 41.9 0.8 1.2 128 415 0.9 20 134 48.1 1.2
homog 2mat3 1.2 7.2 706 1.0 1.3 4.6 754 1.0 1.6 4.1 782 1.2
katsura 8 1.4 263 39.6 0.8 1.5 250 385 09 2.2 216 44.6 1.2
gerhard 2 1.1 104 474 0.9 1.3 126 484 0.9 1.7 10.6 54.3 1.1
katsura 7 1.2 283 32.7 0.7 1.4 230 30.2 0.8 2.1 225 382 1.1
gerhard 3 1.3 8.0 40.0 0.9 1.5 7.6 43.4 0.9 1.7 7.6 454 1.1
homog alex 3 1.2 5.0 39.1 1.0 1.2 5.8 42.0 1.0 1.4 5.8 43.1 1.1
cohn2 1.4 19.6 22.2 0.8 1.3 19.8 23.8 09 2.1 196 299 1.1
bjork 8 1.2 236 21.5 0.7 1.6 232 21.1 0.8 2.3 21.8 301 1.1
cyclic 7 1.3  25.0 22.0 0.8 1.6 223 23.8 0.8 2.6 19.6 314 1.1
schwarz 11 1.2 20.1 244 0.8 1.6 159 254 0.9 22 147 301 1.1
symmetric 6 1.3 221 183 0.8 1.5 200 19.1 09 24 18.0 269 1.1
schwarz 10 1.2 19.8 20.1 0.8 1.5 156 21.1 09 2.7 155 285 1.1
homog cyclic 7 1.4 286 24.8 0.7 1.6 243 242 0.8 2.8 220 33.7 1.1
rcyclic 13 1.5 31.1 21.9 0.7 1.7 245 19.8 09 2.9 192 26.1 1.0
rcyclic 14 1.4 285 19.1 0.7 2.0 203 195 09 3.5 206 27.7 1.0
schwarz 9 1.2 21.2 15.7 0.8 1.4 153 18.7 0.9 2.0 162 224 1.0
rcyclic 12 20 251 242 0.7 1.3 20.1 165 0.9 3.1 203 24.0 1.0
rcyclic 11 1.4  26.2 21.1 0.7 1.3 231 19.1 0.8 3.7 187 30,1 1.0
rcyclic 15 1.3 26.2 20.9 0.7 1.5 193 204 0.9 22 172 303 1.0
homog cyclic 6 1.1 273 152 0.6 3.1 19.0 329 08 3.3 193 280 1.0
gonnet 1.4 7.9 56 09 1.3 9.3 4.0 0.9 2.3 6.6 9.2 1.0
ecyclic 7* 1.0 3.2 814 1.0 1.0 1.7 823 1.0 1.0 1.3 84.5 0.9
rcyclic 16 1.1 17.6 19.4 0.8 1.0 11.8 18.4 0.9 1.0 9.6 266 09
reyclic 17* 0.9 159 20.5 0.8 0.9 10.8 19.1 0.9 0.9 8.2 271 0.9
reyclic 18* 0.9 159 182 0.8 1.0 10.0 19.6 0.9 1.0 7.8 29.5 0.9
rcyclic 19* 1.0 16.0 204 0.8 1.0 10.1 199 09 1.1 7.8 29.7 0.9
ecyclic 6* 0.9 18.0 55.3 0.8 1.0 10.9 51.4 0.8 1.2 8.6 66.3 0.8
averages
Pentium Pro 1.3 17.1 33.6 038 1.4 1338 33.8 09 2.1 126 40.3 1.1
HP C160 1.4 9.1 36.6 0.8 1.6 8.4 39.0 09 1.7 9.1 416 1.1
DEC Alpha 1.8 11.8 33.1 08 1.5 11.7 31.5 08 24 102 355 1.0

Table 2: Detailed timings for rank-based monomial operations — same settings as in Table 1.

rank computations, depends on the relative efficiency of the
“conventional” monomial comparisons and on the character-
istics of the example — where the percentage of time spent
in monomial comparisons seems to be the most important
factor (compare the %comp and ¢/¢, columns).

Finally, evaluating the t/¢, columns, we can conclude
good news and bad news: the good news is that rank-based
comparisons, by and large, lead to an overall speedup when
used in combination with traditional (i.e., not vectorized)
monomial operations. That is, our results make a strong
case for such a usage of the rank-based representation. The
bad news is, that rank-based comparisons by and large do
not lead to an overall speedup when used in combination
with vectorized monomial operations. Our results show
that the more efficient vectorized monomial operations re-
sult in smaller speedups of the rank-based comparisons, i.e.,
speedups which are generally too small to outweigh the ad-
ditional cost of computing ranks.

5 Summary

In this paper, we examined monomial representations and
operations for GB computations. In section 2 we argued that
(i) the canonical polynomial representation is a linked list
of terms where each term consists of a coefficient, a degree
field and an array of fixed-length exponent values, and, that

315

(ii) the canonical implementation of monomial operations is
simply the straight-forward realization of their definitions.

In section 3 we introduced the idea of vectorized mono-
mial operations: Instead of working on one exponent at a
time, we work with as many exponents at a time, as fit
into one machine word (say, m). Vectorized monomial op-
erations can be applied to monomial additions, divisibility
tests, assignments, and comparisons w.r.t. simple monomial
orderings; and they have the following advantages:

1. The maximal number of iterations in the inner loops
of the monomial operations is cut by approximately a
factor of m.

Non-aligned accesses of single exponents are avoided.
Monomial comparisons for the different monomial or-
derings are reduced to one routine which does not need
to explicitly distinguish the different simple monomial
orderings.

We have illustrated with our timings that these advantages
directly translate in significant overall speedups of GB com-
putations (which are in the range of 1.5 to 3 in our imple-
mentation).

The concept of vectorized monomial comparisons could
be extended to non-simple orderings (like elimination, block,
or even matrix orderings) based on the following idea: Let
A be a matrix describing an arbitrary monomial ordering.
Besides representing a monomial by a vector « of exponents



we keep an additional vector A o and accomplish divisibility
tests as before, comparisons by vectorized lexicographical
comparisons of the A o vectors and additions by vectorized
additions of both, o and A«. However, the practicality of
this idea remains to be investigated.

In section 4 we examined a rank-based representations
of monomials. For degree-based orderings, we can uniquely
associate an order-preserving rank with each monomial, and
use this rank to reduce a monomial comparisons to just
one integer comparison. Unfortunately, our timings indicate
that this technique does not generally lead to efficiency gains
over vectorized monomial operations, since the time saved
in monomial comparisons is usually not enough to make up
for the additional time spent in rank computations.

In other words, we highly recommend the usage of vector-
ized monomial operations in GB computations, whereas we
can not recommend rank-based monomial representations
and comparisons.

Although parts of our conclusions are based on the tim-
ings obtained from a SINGULAR implementation of these
techniques, they are system-independent in their nature and
should therefor apply in similar ways to other GB implemen-
tations.

With our results we have shown that it can be reward-
ing to systematically examine implementational aspects of
GB computations. We hope to continue along these lines
and, especially, to get more programmers of the various GB
systems to join in such discussions and investigations.

6 Acknowledgments

We should like to thank all members of the SINGULAR de-
veloper team for their support of our work and for giving
us some time off from our day-to-day developer tasks. We
furthermore are grateful to F. O. Schreyer and his colleagues
for placing their DEC Alpha machines at our disposal.

References

[1] ATTARDI, G., AND FLAGELLA, T. Memory manage-
ment in the PoSSo solver. J. Symbolic Computation
21, 3 (March 1996), 293-312.

BACHMANN, O., AND SCHONEMANN, H. Mono-
mial operations for computations of Grébner bases.
In Reports On Computer Algebra, no. 18. Cen-
tre for Computer Algebra, University of Kaiser-
slautern, January 1998. Also available from
http://wuw.mathematik.uni-kl.de/"zca/

BAYER, D., AND MUMFORD, D. What can be com-
puted in algebraic geometry? Cambridge University
Press, Cambridge, 1993, pp. 1-48.

BAYER, D., AND STILLMAN, M. A theorem on refining
division orders by the revers lexicographic order. Duke
J. Math. 55 (1987), 321-328.

Bavyer, D., AND STiLLMAN, M. Macaulay Clas-
sic: A computer algebra system for algebraic ge-
ometry, 1993. Available via anonymous ftp from
ftp://math.harvard.edu/Macaulay.

BUCHBERGER, B. Groebner bases: an algorithmic
method in polynomial ideal theory. D. Reidel Publish-
ing Company, 1985, pp. 184-232.

(2]

(3]

[4]

(5]

(6]

316

[7] CaBoarAa, M., DE DowmiNiCiS, G., AND ROBBIANO,
L. Multigraded Hilbert Functions and Buchberger
Algorithm. In Proc. of the International Symposium
on Symbolic and Algebraic Computation (ISSAC’96)
(Zurich, Switzerland, July 1996), ACM Press, pp. 72—
78.

Cox, D., LirTLE, J., AND O’SHEA, D. Ideals, Vari-
eties, and Algorithms, 2nd ed. Springer-Verlag, 1997.

Giovini, A., Mora, T., Niesi, G., RoBBiano, L.,
AND TRAVERSO, C. One sugar cube, please or Selection
strategies in Buchberger algorithms. In Proceedings of
the 1991 International Symposium on Symbolic and Al-
gebraic Computations, ISSAC’91 (1991), S. Watt, Ed.,
ACM press, pp. 49-54.

GREUEL, G.-M., PFISTER, (., AND SCHONEMANN,
H. Singular Reference Manual. In Reports On
Computer Algebra, no. 12. Centre for Computer
Algebra, University of Kaiserslautern, May 1997.
http://www.mathematik.uni-kl.de/"zca/Singular
PoSSo: Polynomial System 1995.
http://posso.dm.unipi.it/.

RoBBIANO, L. Term Orderings on the Polynomial
Ring. In Proceedings of EUROCAL 85, Lecture Notes
in Computer Science 204 (1985), pp. 513-517.

(8]
[9]

[10]

[11] Solving,

[12]

Appendix A: Benchmark examples

Table 3 lists a summary of their properties (see [2] for a
complete description and references to their origins): col-
umn #vars shows the number of occurring variables, col-
umn #polys the number of elements (polynomials), column
homog gives the homogeneity, and Deg, shows the maximal
degree of the input sets. Degmax gives the maximal degree
occurring during the GB computation w.r.t. the degree re-
verse lexicographical ordering.

Example|#vars #polys homog Degs Degmax

ecyclic 7| 43 7 no 7 27
ecyclic 6| 31 6 no 6 17

reyclic 10<¢<19| ¢ i—1 no i—1 [9/2]|*24+4
homog 2mat3| 19 8 yes 4 13
2mat3| 18 8 no 4 13
homog gonnet | 18 19 yes 2 11
gonnet | 17 19 no 2 11
schwarz 11| 11 11 no 2 13
schwarz 10| 10 10 no 2 12
katsura 8| 9 9 no 2 10
katsura 7| 8 8 no 2 9
bjork 8| 8 9 no 8 18
homog cyclic 7| 8 7 yes 7 20
cyclic 7| 7 7 no 7 27
homog cyclic 6| 7 6 yes 6 17
cyclic 6| 6 6 no 6 17
homog alex 3| 6 4 yes 14 51
alex 3| 5 4 no 14 51
gerhard 1| 5 3 yes 10 32
symmetric 6| 5 5 yes 6 23
homog alex 2| 5 3 yes 12 40
cohn2| 4 4 no 6 20
alex 2| 4 3 no 12 33
gerhard 2| 4 3 yes 9 44
gerhard 3| 4 3 yes 23 81

Table 3: Summary of properties of benchmark examples



