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Matrix Generators for the Orthogonal Groups

L. J. RYLANDS? AND D. E. TAYLOR#

Department of Mathematics, University of Western Sydney, Nepean, Australia
School of Mathematics and Statistics, University of Sydney, Australia

In 1962 Steinberg gave pairs of generators for all finite simple groups of Lie type. In
this paper, for each finite orthogonal group we provide a pair of matrices which generate
its derived group: the matrices correspond to Steinberg’s generators modulo the centre.
These generators have been implemented in the computer algebra system MAGMA and
this completes the provision of pairs of generators in MAGMA for all (perfect) finite
classical groups.
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1. Introduction

Generators for the groups SL(l, q), Sp(2m, q), U(l,q) and Sz(q) have been available in
computer algebra systems for some time ( Taylor, 1987; Schoénert et al., 1994; Bosma,
et al., 1997). Until recently it has only been practical to work with these groups for
small dimensions and small fields. This covered small orthogonal groups (but not in their
natural representation) because the orthogonal groups up to dimension 6 are isomorphic
to other linear groups. For a complete description of the isomorphisms see Chapters 11
and 12 in Taylor (1992).

However, recent advances in computing speed and memory, as well as better algorithms,
make it possible to work with larger groups. Hence there has been an increasing need for
matrix generators for the orthogonal groups, particularly in dimensions beyond 6. This
demand comes from several sources. For example, those working directly with orthogonal
groups as well as those wishing to test new linear group recognition algorithms (Niemeyer
and Praeger, 1998; Celler and Leedham-Green, 1997) now need generators for all classical
groups. The recent paper by Ishibashi and Earnest (1994a, b) provides generators for
O(l, ¢), but not for SO(I, g) nor its derived group (I, ¢). The matrices of Ishibashi and
Earnest have been implemented in GAP by Celler (1994, ogroup.g.3.4, GAP library).

In 1962 Steinberg gave pairs of generators for all finite simple groups of Lie type. Stein-
berg’s generators are given in terms of root elements and generators for the Weyl group.
In this paper we describe the corresponding generators for the finite orthogonal groups
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Q(l, q). These generators are presented as matrices and are equal to Steinberg’s gener-
ators modulo the centre of the group. The purpose is to provide explicit constructions
for the orthogonal groups which can be used within computer algebra packages such as
MAGMA (Bosma et al., 1997) or GAP (Schénert et al., 1994). Our methods are easily
adapted to provide generators for SO(l,q) and O(l, q).

In the first part of the paper we outline the (well known) connection between the
orthogonal groups and the Chevalley groups of types B,,, D,, and 2D,, via their Lie
algebras. This leads directly to the construction of the matrix generators in terms of root
elements and the BN-pair structure.

2. Preliminaries

There are three families of finite orthogonal groups and, except for a few small cases,
they correspond to Dynkin diagrams of types By,, Dy, and 2D,,. Steinberg (1962) pro-
vided generators for the Chevalley groups in terms of root elements and it is our inten-
tion to lift his generators to the corresponding matrix groups. As a general reference see
Humphreys (1972), particularly Sections 8 and 25.2.

We begin by reviewing the connection between orthogonal groups defined by quadratic
forms and Chevalley groups defined in terms of simple Lie algebras of types B, and D,,.

A quadratic form on a vector space V over a field F is a function @ : V' — IF such that
Q(av) = a’Q(v) and B(u,v) = Q(u + v) — Q(u) — Q(v) is bilinear. It is non-degenerate
if Q(v) # 0 for all nonzero elements v of the radical of 3. For details see Taylor (1992).
If the characteristic of F is not 2, 8 is a non-degenerate symmetric bilinear form and
uniquely determines Q. If the characteristic of F is 2 then (3 is an alternating form and
the dimension of its radical is either 1 or 0.

It is always possible to write V' as an orthogonal direct sum

V=Li1lLyl...1lL, 1W

where L; = (e;, f3), Qle;) = Q(f;) = 0, B(es, f;) = 1 and W is a subspace with no
singular vectors. If IF is finite, the dimension of W is 0, 1 or 2. If FF is algebraically closed
(e.g., C) the dimension of W is 0 or 1. The integer m is the Witt index of @ and we let
be the dimension of V.

In describing the groups and Lie algebras associated with a quadratic form @ we shall
write matrices with respect to the ordered basis

617627'"7677’L7w17"'7wk7fm7"'7f1

where wq, ..., wy is a basis of W to be chosen later. We use J to denote the matrix of 3
with respect to this basis.

In the case F = C, the complex Lie algebra L of @ consists of all I x I matrices X such
that X*J + JX = 0 with Lie product [zy] = 3y — y=.

Over the complex numbers there is just one non-degenerate quadratic form in each
dimension. If | = 2m, we have

and L is of type Dy,. If I = 2m + 1, we may take W = (w), where Q(w) = 1 (hence
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Bw, w) = 2),
1
1
J= 2
1

1

and L is of type B,,.
In type D,, the diagonal matrices of £ have the form
h= diag()\l, )\27 ey )\my _)\my ey —)\1)
and in type B,, they have the form
h = diag()\l, )\27 ey )\m, 0, _)\my ey —)\1).

In both cases the set H of these matrices is a Cartan subalgebra.

The root space of @« € H* is £, = {x € L | [hz] = a(h)z} and the set ® of nonzero
« such that £, # 0 is the root system of H. For a € ®, dim L, = 1 and we have the
Cartan decomposition £ = H &P c4 La-

The real vector space spanned by the roots may be identified with the Euclidean

space R with orthonormal basis £1,...,&,, given by £;(h) = \;, where h is defined as
above.

For each @ € ® there is a unique element h, € H such that a(h,) = 2 and h, €
[LoL_ o] We shall choose a set of fundamental roots A = {1, as, ..., am} and elements

To € Ly, for @ € @, such that {z4,he, | @ € ®,1 < i < m} forms a Chevalley
basis for £. That is, [zaZ_o] = he and for a,8,a + 8 € &, [xazg] = Capg®arps, Where
Cag = —C.qo g €L

Let F;; be the I x I matrix with 1 in the %, j-th position and 0 elsewhere; also let 7/
denote [ +1 — 4.

2.1. casE 1. TYPE D,, (I =2m, m > 1)

The set of roots is ® = {£(e; £¢;) | 1 < i < j < m}. As fundamental roots for D,
we take

a1 =E€m-1+Em @2 =€Em 1 —Emy...,m =E1 — €2

corresponding to the Dynkin diagram

}kﬁ..ﬂ

The set of positive roots is {e; £ &; | i < j}.
The elements h; = h,, of the Chevalley basis are

hy = B 11+ B — Bt — g1y m_1y  and
hi = FEmi1-kmi1—k — Bmio kmri2—k
FE(mi2-ky (mr2-ky = Emir-ky,myr-ny  k=2,...,m.
Then {h; |1 <i < m} is a basis for H.
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Now define a map p : & — £ such that p(a) spans £, by
we;i —g5) = Eij — Eyy N

}L(Ei + <€j) = _Eij/ + Eji/ 1< ]
,u(—si — <€j) = Ei/j — Ej/i 1< j.

The set p(®) completes the Chevalley basis as is shown by the easy but tedious calculation
that for all o, B8 € ®

+(r+ Dpla+ ) atpged
() p(B)] = § ha a+8=0
0 a+ ¢ euU{0}

where 8 —ra,...,8 + go is the a-string through 8 (Humphreys, 1972, §8.4). Thus the
Chevalley basis for £ is

{pla) |ae ®}U{h; |1 <i<m}.

If « is a positive root then p(«) is an upper triangular matrix.
2.2. CASE 2. TYPE B,, (I=2m+ 1)

The set of roots is ® = {£e;,+(e; £ ¢;) | 1 <3 < j < m}. As fundamental roots
for B,,, we take

Q1 =Em, 02 = Em -1 —Em, X3 = Em-2 —Em_1,--.,0m — €1 — €2
corresponding to the Dynkin diagram

The positive roots are all €;, €; +¢; and €; —¢g; (i < j).
The elements h; = h,, of the Chevalley basis are
h1 =2E,m — 2F and
hi = FEpmii km+1-k — Pmao kmi2 &
FEmt2-ky (mt2—k) — Bomt1-k) (mt+1—ky k=2 ...,m.

Then {h; |1 <i < m} is a basis for H.
Now define a map p : & — £ such that ,u(oz) spans L, by

plei — &) = i A
plei +e5) = EU + Eﬂ/ 1<j
p(—e; —g;) = i 1< j
( ) - 2Ez ym+1l T Em+1 i/

)u(_ ) _2El ,m+41 + Eerl 3.

The set p(®) completes the Chevalley basis as is shown by the easy but tedious calculation
that for all o, B8 € ®

+(r+ Dpla+ 8) atpged
() u(B)] = § Pa at =0
0 a+ B¢ eU{0}.
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Thus the Chevalley basis for £ is
{pla) |ae ®}U{h; |1 <i<m}.

If v is a positive root then p(«) is an upper triangular matrix.

The matrices of %,u(a)k, a € ® have integer entries (Humphreys, 1972, §25) and
therefore exp(tu(e)) may be interpreted over any field. For each prime power g we let
£(g) denote the Lie algebra spanned by p(®) over F,. The algebra £(g) acts on the vector
space V(g) and we shall use the same notation for its basis as for V. The quadratic form @
takes integral values on the integral linear combinations of this basis and so induces a
quadratic form Q(g) on V(g). In all cases it remains non-singular.

3. Orthogonal Groups

From now on we work with a fixed finite field I, and abbreviate £(q), V(g) and
Q(q) to £, V and Q. The group of all non-singular linear transformations of V' which
preserve @ is the orthogonal group O(V, Q); the intersection of the kernels of the spinor
norm and the Dickson invariant is Q(V, Q). When | = 2m and Q is a form of (maximal)
Witt index m we denote this group by Q7(l,q) (£ has type Dy, in this case). When
I = 2m+1 and the Witt index of Q is m we denote it by Q°(1, ¢) (£ has type B,,). When
I = 2m and the Witt index of @ is m — 1 we denote it by (I, ¢) (see Section 5). We
also denote the groups Q27(1,q), 2°(1,q) and 27(1, q), by Q¢(I,q) for ¢ = 1,0, —1. Except
for Q1 (4,2), UV, Q) is the derived group of O(V, Q) (Theorems 11.45 and 11.51, Taylor,
1992).

For I > 3, the groups Q¢(1, q) are closely related to the Chevalley groups of adjoint type
of the Lie algebra £ of the previous section. The groups that do not arise as Chevalley
groups are considered later.

The previous section describes a representation ¢ : £ — gl(l,q) of £ as ! x | matrices.
For each p(c) the matrix ¢(u(e)) is nilpotent, hence the sum

exp(@(1p(a))) = 1+ 19p(0) + oop(a)’ + -

is finite (in fact in our case it has no more than three terms). Let x4 (f) = exp(¢(tu(a)));
then the Chevalley group associated with £ and ¢ over IF is

G={(za(t) |t €Ty, acd)

The adjoint representation of £ is the map ad : £ — End(L£) where ad(z)y = [zy].
It is not difficult to show (Carter, 1972; theorem 4.5.1) that ad u(«) is nilpotent. Let
Fa(t) = exp(ad u(a)), then (Carter, 1972; theorem 4.5.1)

H(E0(1).2) = 2o () P(2)za(t) ! for z € L.

Hence the group G is related to the Chevalley group of adjoint type, G = (Za(t) | £ €
Fy, o € ®), by the homomorphism 6 : G — G where

0(g).z = ¢ * (g(ﬁ(z)g’l) forze L, g€ G.

By construction 0(z,(t)) = £4(t) and therefore 0 is onto. Every element in the kernel
of 8 commutes with the image of ¢, and hence the kernel of 8 consists of scalar matrices.
Given a singular vector v and v € (u)" we define a Siegel transformation to be a map
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Puv € (V) such that
Puw(E) =z + Bz, v)u — Bz, u)v — Q(v)B(z, u)u.

The py, ., generate Q(V') (Taylor, 1992; Theorem 11.46). For each root o, z(t) is a Siegel
transformation. For example when a = &; — &5, ®a(t) = pre,,r;, = I +1(Es; — Ejy) and
when o = Ei, $a(t) = Pte,,w — I+ t(2E7;7m+1 — Eerl,i/) — tini/.

This proves:

THEOREM 3.1. For e =0,1, G = Q¢(l,q) and the kernel of 6 has order 1 or 2.

4. Generators for Q7 (l,q) and Q°(l, q)

In this section £ will be a generator of the group ]FX For each positive root « there

exists an element hg ¢ such that hy cxg(k)h L = acg(g ?_Tk) forall k € Fy and 8 € ®
(Steinberg, 1962; Theorem 3.4); in what follows a diagonal matrix will sufﬁce and it is
easy to check that it satisfies the conditions.

As in Steinberg (1962; Theorem 3.7), for each o € &7, n, = z,(1)z_o(—1)z4(1).
Write n; for ng, .

We are now ready to give matrices for Steinberg’s generators for the groups (1, ¢)
for e =0, 1.

4.1. TYPE D,, (I=2m) m EVEN m >3

In this case
Ta, (1) =1+ dplen) =1 — Epm_1,mr + By -1y,
Loy (1) =1+ ¢N(_a1) =1+ E(mfl)/,m — B m—1,
Tay (1) =1+ ¢plaz) =1+ Em 2m1 — Em_1y (m—2)-

The matrix (ngi)) of n1 = zq, (1)z_o,(—1)z4, (1) has 1s on the diagonal and 0Os elsewhere
except

0 j=k=m-—1, m, m or (m—1)
iy =4GR = (m— L) or ((m 1), m)
1 (7,k) = (m,(m — 1)) or (m’,m —1).
Fori=2,...,m, n; = (nyk)) has 1s on the diagonal and 0’s elsewhere except
0 j=k=m+1—i, m+2—4 (m+2—%9)or (m+1-—1)
ol G =m2—imr1-id)
i) ={ -1 (G.k) = ((m+2 =), (m+ 1 i)
1 G k)= (m+1—i,m+2—1i)
1 (4, k)=({(m+1-19),(m+2-13)).
The matrix (n;z) of n =mniny...n, has nonzero entries
(=™ (J,k) = ((m —1)",1) or (m —1,1")
ik — 1 (.77 k) - (m7m/) or (m/7m)
1 (G k) = (3,3 + 1) or (&, +1)) fori=1,...,m —2.

The matrix (hjz) of ha, ¢ is the identity except that hm_1m—1 = Am m = £ and
hm,m = h(mfl)/,(mfl)/ - 571



Matrix Generators for the Orthogonal Groups 357

It follows from Steinberg (1962, Theorem 3.13) that Q7 (I, ¢) is generated by

hase and 2_q, (D)za, (1)n for ¢ > 2
Ty (1)Zoy (1) and n for g = 2.

4.2. TYPE D,, (I=2m) m obD m > 2

It follows from Steinberg (1962, Theorem 3.11) that Q1 (I, q) is generated by

ha, e and x4, (1)n for ¢ > 3,
Za, (1) and n for ¢ =2,3

where z,, and n are as in Section 4.1 and the matrix (h;z) of ha, ¢ is the identity except
that hmfl,mfl - hm,m - 5 and hm/,m/ - h(mfl)/,(mfl)/ = 571'

4.3. TYPE Dy (I =4)

In this case the group is the central product SL(2,q) o SL(2, q). Let p be the charac-
teristic of Fy. We choose elements ¢ (of order p) and z (of order ¢ + 1) which generate
SL(2,q). (See p. 209 of Di Martino and Tamburini (1991) for a discussion of this point.)
Since z and z have coprime order, SL(2, ¢) o SL(2, q) is generated by (z, z) and (z, z).

To define z we take the underlying space for SL(2,q) to be the additive group of the
field Fy2. Then z is multiplication by § = ¢ 41 where ( is a primitive element of Fg2. The
element £ has order ¢ + 1 and satisfies a quadratic equation over IF, whose roots are £
and &7 = £, Thus the minimal polynomial for £ is X? —aX 41, where a = £+ £~ ! and
the matrix of z with respect to the basis 1, £ for Fy is ((1) _al ) Taking x = ((1) i), it
follows from Dickson’s Theorem (Huppert, 1967; Hauptsatz theorem 8.27) that z and z
generate SL(2,q).

In order to represent the elements of SL(2, q)0SL(2, q) as 4 x 4 matrices in Q27 (4, q) we
use the following construction. The group SL(2, q) x SL(2, q) acts on the space V of 2 x 2
matrices M over [F, such that (A4, B).M = AM B*. The determinant of M is a quadratic
form of Witt index 2 preserved by this action and the image of SL(2,q) x SL(2,q) is
isomorphic to SL(2, q) o SL(2,q) and coincides with Q7 (4, ¢). Using this repesentation
Q7 (4, q) is generated by the matrices

0 -1 0 -1

1 a -1 a
0 O 0

0 0 -1 a

and

0 0o 1 -1
0 0 0 -1
-1 -1 a -—a
0 1 0 a

corresponding to (z, z) and (z,x) respectively, with respect to the basis

o o) (Vo) (o) (o)}



358 L. J. Rylands and D. E. Taylor

4.4. TYPE Dy (I1=2)

In this case Q7(2, q) is the derived group of the full orthogonal group. It is cyclic, of
order % when ¢ is odd and ¢ — 1 when ¢ is even. In both cases it is generated by

&£ 0
0 ¢2 )
4.5. TYPE By, (I=2m+1) m >2

In this case h = h., 1., ¢ is the identity except that h11 = hmm = £ and hpy g =
his 10 = &1, The matrix (njk ) of nq has 1s on the diagonal and 0s elsewhere except

a0 _ 0 j=k=morm
w1 (4,k) = (m,m’), (m+1,m+1) or (m/,m).
For i = 2,..., m the matrix (nyk)) of n; has 1s on the diagonal and Os elsewhere except
0 j=k=m+1—i, m+2—4 (m+2—%9)or (m+1-—1)
1 GRh=mi2—imi1-9)
n =9 -1 (k)= ((m+2—i), (m+1—i))
1 G k)= (m+1—i,m+2—1i)
1 (4, k)=({(m+1-19),(m+2-13)).
Then n = nins ... n,, has nonzero entries
(=™ (4, k) = (m',1) or (m,1")
njk =4 —1 (J,k)=(m+1,m+1)
1 (Gok) = (3,i+ 1) or (i',(i + 1)) fori=1,...,m — L.
For odd q it follows from Steinberg (1962; Theorem 3.11) that 2°(1, q) is generated by
h and x4, (1)n for ¢ >3
Zo, (1) and n forg=3

where 24, (1) = I + ¢p(en) + sopu(@1)? = I+ 2Em mi1 — Emi1,m’ — Enme.
For q even it follows from Steinberg (1962; Theorem 3.14) that Q°(l, ) is generated by

hand 2., . (1)z_q,(1)n for ¢ > 2
Tey—e, (1)T_ay (1) and n for ¢ =2

where 2., ., (1) =I+E1m+ Emwvand z_o, (1) =1+ Entim+ Ep ;.
4.6. TYPE B;

The group Q°(3,¢q) is isomorphic to PSL(2,q) (Taylor, 1992, theorem 11.6). Conse-
quently the Steinberg generators for PSL(2, q) provide generators for 2°(3, q). The group
is generated by

nz and h for g > 3
z and n forg=2,3
where
0 0 -1 1 0 0 €2 0 0
n = 0 -1 o0 , T= 1 1 0 and h= 0 1 0
-1 0 0 -1 -2 1 0 0 &
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5. Generators for Q7 (1, g)

The group Q7 (1, q) of type 2D,, can be considered as a subgroup of the group G =
Q7 (1,¢%) of type Dy, vq. Thus Q7(1,q) is a group of [ x I matrices where | = 2m + 2.

The Dynkin diagram for type D,,11 has an automorphism of order 2: swap roots a;
and as, and leave the other fundamental roots fixed. This extends to an automorphism
of the whole root system. Write @ for the image of . For ?2D,, take the roots to be the
orbits of this automorphism on the roots for type Dn,y1. So the roots are

{1,2},{3},...,{m}.

The Dynkin diagram for 2D,,, is e—e—e— - .—e

The field F 2 has an automorphism of order 2 given by ¢ — 2. Write ¢ for the image
of . The map given by z,(t) — zz(f) extends to an automorphism of G of order 2. The
groups 2~ (1, q) are defined in terms of fixed points of this map. See Carter (1972) for
details.

Steinberg (1962) gives a pair of generators for PQ(l,q) in terms of elements of
PQT(1l,4%); we use this to get generators for 27 (I, ¢) in terms of elements of Q7 (I, ¢%).
However, to get matrices with entries in the correct field (Fy) we follow Carter (1972,
p. 271) and change the basis.

Let v be a generator of IF 2 over IFy. In type Dy, ; the quadratic form is Q(Ziﬁl (aze;+
b f;)) = Z?:;laibi. Take as a new basis ej,..., e, w1, Wa, frn, ..., f1 where e, =
w1 + vwa and fp 11 = —w1 — Twy. With respect to this new basis the quadratic form is
given by Q' (X7 (ases + bifi) + cwr + dwa) = 37 (aibs) + (d — ve)(d — ve) /(v — D)2
Over the field F, the quadratic form Q' has Witt index m — 1.

With this new basis we can now write down Steinberg’s generators as | x [ matrices
with entries in IF. The change of basis matrix is

Im
S—1= A
I,
where
A= < vl )
v T
Define h to be
Imfl
S hyyhopS = B
Imfl
with
vy
B_ -1 v lypt
o —v—7 14ty ’
!
and z to be
Imfl
Sz, (e, (1)S = S 12q, (Dae,(1)S = C
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with
1 1 0 1
C— 1 0 2 _
1 v+7v
1
Now nrp = zp(1)z_r(—1)zgr(1) (R is the new root {ay,as}). With ns, ..., ny,11 as

in type D, (4.1) we calculate n = ngngng ... Ny, 1. The matrix (n,;) of n has nonzero
entries

(=™ (4, k) = (m/,1) or (m,1")
-1 (G, k) = (m+1,m+1)
T e e (G, k) = ((m + 1)/, m +1)
| (k) = (m 1 1 (m 1 1))
1 (j,k)=(,i+Dor (I, G+ 1)) fori=1,...,m—1

)

It follows from Steinberg that Q~ (I, g) is generated by h and zn for all g.

6. Availability

The generators for Q¢(1, g) described in this paper as well as generators for SO%(1, ¢)
and O¢(l, ¢) have been included in MAGMA V2.10.
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