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How to Recognize Zero

DANIEL RICHARDSONT
Department of Mathematics, University of Bath, U.K.

An elementary point is a point in complex n space, which is an isolated, nonsingular
solution of n equations in n variables, each equation being either of the form p = O,
where p is a polynomial in Q[z1,...,zy], or of the form z; — e** = 0. An elementary
number is the polynomial image of an elementary point. In this article a semi algorithm
is given to decide whether or not a given elementary number is zero. It is proved that
this semi algorithm is an algorithm, i.e. that it always terminates, unless it is given a
problem containing a counterexample to Schanuel’s conjecture.
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1. Introduction

In computing, a lazy sequence is a finite initial segment of a sequence together with
a process which generates more elements of the sequence, if desired. See, for example,
Paulson (1991).

By analogy with this we may say that a lazy complex (or real) number is a bounded
precision floating-point complex (or real) number together with a process which could
be used to increase the precision to any desired extent.

We will say that two such lazy numbers are equal if repeated application of their
processes results in sequences which converge to the same ordinary number. (Of course
there are other reasonable definitions of equality for lazy numbers. The one given here
might be called standard equality.) It will be assumed in the following that real and
complex numbers are given in lazy form, rather than as completed infinities of some
kind.

The following fundamental question immediately presents itself:

For which natural subsets of the real and complex numbers can we do eract computa-
tions?

The computations of interest include the field operations, a test for equality among
complex numbers, and determination of the sign of a real number.

It is clear that we can patch our approximations and processes together in order to
effect addition, subtraction and multiplication. If two numbers are unequal, we will even-
tually be able to recognize this, by calculating them to sufficient precision. However,
there may be problems recognizing equality.
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If we could recognize zero, we could recognize equality, since we can do subtraction.
If we can recognize zero, we can also avoid mistakes with division by zero, so we can do
division. Also if we can recognize zero we can order real numbers effectively.

So the central part of the above problem reduces to: In which natural subsets of the
real and complex numbers can we recognize zero?

In the following section a definition is given for a subset of the complex numbers which
is called elementary. This set will be denoted by £.

& is algebraically closed and is also closed under application of elementary functions,
such as €*, sin(z), cos(z). Also, isolated solutions of systems of equations involving el-
ementary functions and polynomials with coefficients in £ have coordinates which are
in £.

The main result below is that we can recognize zero among the elementary numbers,
unless we are given a problem which contains a counterexample to Schanuel’s conjecture.
(The Schanuel conjecture is explained below.)

Let Q be the rational numbers.

If B is a set of complex numbers and z is complex, we will say that z is algebraically
dependent on B if there is a polynomial

p(t) = agt® + - - + ag

in Q[B][t] with ag #0, d > 0 and p(z) = 0.

If S is a set of complex numbers, a transcendence basis for S is a subset B so that no
number in B is algebraically dependent on the rest of B and so that every number in .S
is algebraically dependent on B.

The transcendence rank of a set S of complex numbers is the cardinality of a transcen-
dence basis B for S. (It can be shown that all transcendence bases for S have the same
cardinality.)

SCHANUEL’S CONJECTURE. If z1,..., 2z, are complex numbers which are linearly inde-

pendent over Q, then {z1,..., z,,e* ,e*} has transcendence rank at least n.

y y g

It is generally believed that this conjecture is true, but that it would be extremely
hard to prove. See Baker (1975), Ax (1971), Rosenlicht (1976).

The history of the zero recognition problem is somewhat confused by the fact that
many people do not recognize it as a problem at all. In the algebraic case, the nature
of the problem depends upon what we decide to accept as the definition of a complex
algebraic number.

In general, our way of understanding the algebraic numbers has been influenced by
the historical struggle to separate out the abstract algebra from interpretation in the
complex numbers. From this point of view, it has been assumed that algebra should
avoid floating-point approximations. Hence it has been considered that the right way to
do an algebraic computation is to put all the numbers involved into an algebraic number
field, an abstract object in which there is a canonical form. See Frohlich and Shepherdson
(1956). (Note that we do not have a useful canonical form for the whole set of algebraic
numbers, but only for the numbers in each particular finitely generated algebraic number
field.)

If we are ultimately interested in floating-point numbers, it is not clear that it is
sensible to construct an enclosing algebraic number field in order to do one computation.
But in any case this option disappears when we work with elementary numbers. There
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is at present no sufficiently developed theory of elementary number field. We do not,
for example, know which abstract fields with exponentiation can be embedded into the
complex numbers. The ideal of separation between algebra and geometric interpretation
does not seem to work very well in this case.

The first good result about recognition of zero among nonalgebraic numbers is due
to Caviness (1970). Caviness shows, in essence, that if a weak version of the Schanuel
conjecture is true it is possible to define a canonical form, and thus to solve the zero
recognition problem in the set of numbers which are obtained by starting with the ratio-
nals and ¢ and closing under addition, subtraction, multiplication, and exponentiation.
Of course, this set is probably not algebraically closed.

More recently, Macintyre and Wilkie (forthcoming) have proved that if the Schanuel
conjecture is true then the theory of (R, e®) is decidable, where R is the ordered field of
the reals.

In particular the Macintyre and Wilkie result solves the zero recognition problem for
the (necessarily elementary) numbers in the minimal model for this theory. Their methods
can be extended also to the theory of (R,e”, siny q)(z)), where sinjg 1)(z) means sin(x)
restricted to the interval [0, 1], and defined to be 0 outside this interval. In this theory
all the real elementary numbers are definable. The real and imaginary part of complex
elementary numbers are real elementary. So the methods of Macintyre and Wilkie can
be used to show that the zero recognition problem can be solved for the elementary
numbers.

The work reported in this article is the result of a long independent development,
however, the intention of which is ultimately to develop algorithms to solve problems
in the real and complex numbers. (See Richardson, 1969, 1971, 1991, 1992, 1993, 1995,
Richardson and Fitch, 1994.) The techniques used here, i.e. Wu’s method and the LLL
algorithm, have their origins in computer algebra rather than in model theory.

2. Elementary Points and Numbers

DEFINITION 2.1. An exponential system in variables x1, ..., %y is (S, Ex), where S, =
(p1,...,pr) is a list of r polynomials in Q[z1, ..., zy], and Ex = (w1 —e™, ... wg — e*)
is a list of k terms, w; — e, with {w1, ..., wk,21,...,2k} C{z1, ..., 20}

Let C be the complex numbers.
In all the following, we will use (S,., Fx) to denote an exponential system, as described
above. We will use J(S,, Ex) to denote the r + &k by n matrix of partial derivatives

(0fi/0x;), where (f1,..., fr) =Sy and (fre1,..., frex) = Ex.

DEFINITION 2.2. If v is a point in C", we will say that (S,, Ey) is nonsingular at « if
r+k =n, and if the matriz J(S,, Ey) is nonsingular at .

DEFINITION 2.3. A point o in C™ is elementary if there is an exponential system ( Sy, Ey),
with r +k = n so that (S, Ex)(a) =0, and so that (Sy, Ex) is nonsingular al «.

DEFINITION 2.4. A complex number c is elementary if there is an elementary point o
and a polynomial g in Qz1, ..., x| so that ¢ = g(a).

At each stage in the following, we will assume that we have approximated some ele-
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mentary numbers to within some tolerance e = 1077, We will use prn for the number

of decimal places which are currently assumed to be known.

If (z1,...,2y,) is in C", define d(z1, ..., x,) to be the maximum of the absolute values
of the real and imaginary parts of z1,...,zy,, i.e.
d(x1,. .., 2pn) = max(|Re(z1)], [ Im(z1)], .. ., | Re(zn)|, | Im(zn)]).

For o in C", let N () = {8 : d(a — 3) < ¢e}.

N(a) can be visualized as a coordinate aligned box in R?™ around a. We will use
ON () to denote the boundary of N(a).

It is assumed that we have an interval arithmetic procedure for polynomials in z1, .. .,
Iy, €71, ..., €% with the following property: if p is an expression for such a polynomial and
o is an n tuple of prn precision complex floats, then the interval arithmetic procedure
applied to p over N (a*) gives a pair of intervals (I, I;), with rational endpoints, so that
the box which is the product of them in the complex plane is guaranteed to contain the
image of N.(a*) under p. Furthermore, the procedure is such that the lengths of I, and
I; tend to zero as prn increases (see Alefeld and Herzberger, 1983).

We will say Fprn p # 0 in Nc(a™) if the intervals (I,, [;) produced by the interval
arithmetic procedure do not both contain zero, i.e. if the complex 0 is not in the box
which is the product of the intervals.

We will say possible(p = 0, N.(«*)) in the complementary case in which the intervals
(I, I;) produced by the interval arithmetic procedure do both contain zero.

Of course bFpyp p # 0 in Nc(*) depends on a particular expression for p, and not just
on p as a function, since we do not, for example, assume that our interval arithmetic
procedure obeys the distributive law.

Fprn p # 0 in Nc(o*) implies (VX € Nc(a*))p(X) # 0, but is much stronger. As an
important special case of this, if p is the (unsimplified) determinant of J(S,, Ex), with
r+k=mn, and if Fprn p # 0in N(a*) , then the system of equations

(S,, FEx) =0

y e

can have at most one solution in N¢(a*). See Aberth (1994) for a discussion of this.
2.1. How IS AN ELEMENTARY NUMBER GIVEN?

We will assume in all the following that an elementary number ¢ € £ is given to us in
the following way:

1. We are given an exponential system (S,., Ex) in n variables, z1, ..., Zp, with r+k =
n.

2. We are given a neighbourhood N (a*) , with ¢ = 1077 and «* is an n tuple
of precision prn complex floats. Let J be the determinant of J(S,, Ex). We have
e J £ 0 in Ne(a).

3. We are given a proof that there is a point « in the interior of N.(a*) so that
(Sr, Ex)(a@) = 0.

4. The number c is defined as ¢(a)) where ¢ is a polynomial in Q[z1,...,z,] and « is
the elementary solution of (S,, Ey) = 0 in N (o).

We need to say some more about what kind of proofs might be acceptable for item 3
above. Suppose there is no solution of (S,, Ex) = 0 in ON(a*). In this case the topological
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degree of (Sy, F) over Nc(a*) is defined, and can be calculated by any one of a number of
algorithms. One algorithm to calculate such a degree is in Aberth (1994). This calculation
will use floating-point arithmetic but at a precision higher than prn and will also verify
that there is no solution on the boundary of the box. Because of item 2, the only possible
values for the degree are —1, 0, or 41, and there is a solution in the neighbourhood iff
the degree is nonzero.

Item 2 also implies that any solution in N.(«a*) is necessarily nonsingular, and that
there is at most one solution of (S,, Ex) = 0 in N.(a*).

If prn is sufficiently large, we can use Newton’s method to obtain a sequence of in-
creasingly good approximations to a:

ag = a*
a1 = a; — J(Sy, Ek)il(STaEk)(ai)

Not only is convergence of this guaranteed for sufficiently large prn, but there are also
standard tests to verify convergence in N(a*), provided, again, that prn is sufficiently
large. One such is given by the Kantoravitch theorem in Rabinowitz (1970). Others are
given in Alefeld and Herzberger (1983), and in Richardson (1995). These tests for Newton
convergence can also be used, instead of computation of topological degree, to verify the
existence of a solution in the neighbourhood.

In terms of giving the proofs required in Item 3, it is not clear whether we should prefer
topological degree computation, or a Newton convergence test, or some other method.
All we are claiming here is that there exist feasible standard methods for giving such
proofs. All these methods depend upon the fact that the number of equations is the
same as the number of unknowns, and that we have a guarantee for the nonsingularity
of the Jacobian in N.(a*).

Once we have a proof that there is a unique solution of (S,, ) = 0 in N.(a*), we can
use either Newton’s method, or recursive subdivision and interval arithmetic to increase
prn, reduce € and improve our approximation a*. This method of giving the number ¢
is consistent with the lazy philosophy stated earlier.

Note that the proof is part of the presentation of an elementary number. If we are not
given enough information, for example if the precision is not high enough to carry out
either of the types of verification mentioned above, then we have not been given a correct
specification of an elementary number.

2.2. A CONSEQUENCE OF SCHANUEL'S CONJECTURE

We will say that a list of polynomials, S, = (p1,...,pr), is independent at « in C™ if
the r x n matrix of partial derivatives (Op;/0x;) has rank r at «, i.e. if the gradients of
p1,-..,Ppr are linearly independent at c.

If there are r independent polynomials, S, in Q[z1, ..., 2] at «, then, by the implicit
function theorem, the equation S, = 0 implicitly defines r of the coordinate variables as
algebraic functions of the other variables in some neighbourhood of «. In this case the
transcendence rank of the coordinates of & can be at most n — r.

We have the following obvious consequence of Schanuel’s conjecture.

PROPOSITION. (Assuming Schanuel’s conjecture). Suppose (Sy, Ex)(a) =0 and r +k >
n, and By = (w1 —e*, ... wy —€*), and S, is independent at «. Then, at «, z1, . ..
are linearly dependent over Q.

) %k
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PrOOF. If z1,..., z; were linearly independent over Q at «, then, by Schanuel’s con-
jecture, {z1,..., 2, w1,...,w;} would have transcendence rank at least k at «. Thus
{z1,...,2,} would have transcendence rank at least k. In this case there could exist at
most n — k independent polynomials in Q[z1, ..., z,] which are also zero at «. Since
r > n — k we have a contradiction. [J

As will be seen later, this implies that any identity among elementary numbers is
either an algebraic consequence of their definitions or is explained by a linear relation-
ship between numbers which appear in the definitions as arguments of the exponential
function. So, in order to detect the presence of zero, we need to be able to detect linear
relationships over Q among elementary numbers, and we also need a systematic way to
make algebraic deductions. The first problem is solved below with the help of the LLL
algorithm, and the second is solved subsequently using a variation of Wu’s method.

3. Finding rational linear relationships among elementary numbers

Suppose we are given an elementary point a in C", as described above.

The point « is the unique solution of (S,, E) = 0 in Nc(o*), and Ey = (w; —
el ... wy —e%).

We suppose that (z1, ..., zx) and (wy, ..., wy) are coordinate values of . These values
are fixed, although we only currently know them approximately, as o, with error no
more than e. Using the values in ® and the error bound, we get a z-box, containing
(#1,...,2) and a w-box, containing (w1, ..., wk).

We wish to find, if possible, a nontrivial sum > n;z;, with nq, ..., nk integral, so that
the sum is indistinguishable from zero, according to the current precision, i.e. so that

possible (Z n;z; = O,Ne(a*)).

A sum of this sort will be called a candidate sum.

Define the height of a sum Y n;z; to be max(|n1], ..., |ng|).

We prefer candidates with small height. Of course, if one of the z; is itself indistin-
guishable from zero, we can immediately find a candidate sum of height one. We assume
in the following, therefore, that for all z;

|_an Zg 7é 0

This means that the z-box, containing the possible z values is a product of intervals,
none of which straddles zero. Let m be the minimum of the absolute values of the
coordinates of the z-box.

We will also suppose in the following that prn is sufficiently large so that

CONDITION 1. prn > 4k, and 10~ P"™/% < m < 1077/4%

Define pn(z1,...,2k) to be the minimum of | > n;z;| for nontrivial sums of height
< N. Let M be an upper bound for the mean of |z1], ..., |z|. There are (2N + 1)* sums
of height < N, and all such sums have absolute value no more than NkM .

Around each such point, put a circle of radius 2NkM/(2N + 1)¥/2. At least two of
these small circles overlap, since the sum of the areas of the small circles is more than
m(NkM)2.

So there must be two such sums with different coefficients which differ by no more
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than (4NEM)/(2N + 1)*/2. If we subtract these two sums, we get a sum of height < 2N.
We have

pan (21, .., 2) < (ANEM) /(2N + 1)*/2.
So if N is even un(z1,...,2) < (2NEM)/(N 4 1)¥/2 and, in general,
pn(z1, ..., zn) < (2NEM)/N*/2,
If z1, ..., zx are all real, we get a better bound
un(z1, .., z1) < NkM/Nk.

We also would like to have a lower bound for pun(z1,...,2x) but this depends on
z1,..., 2. It is not clear to me how to estimate this lower bound, even when zq, ...,z
are chosen at random.

7

OPEN QUESTION. Suppose z1, ..., zi are chosen at random independently with uniform
distribution in (0, 1). What is the expected value and variance of pn(z1, ..., zk)7

There is some numerical evidence for the following.

CoONJECTURE. For almost all zy,..., 2, and for all sufficiently large N, (m/N*t1 <
un(z1, ..., 21).)

In view of this conjecture, we will say that a nontrivial sum of height no more than N
is surprisingly small if | > n;z| < m/N?.
We would like to calculate prn and N from the definition of « in such a way that

possz’ble(z iz = 0, Ne(oz*)) = anzl =0

if > n;z; has height < N. In other words we would like some sort of gap theorem
for elementary numbers. This is not available at present. So we impose the following
somewhat arbitrary condition, derived from the concept of a surprisingly small sum
mentioned above.

CONDITION 2. N is the integer ceiling of (10P"™m) /2%,

In order to find a candidate sum we can use the LLL algorithm as follows. Let I
be the k x k identity matrix. Let Reg be the column vector obtained by transposing
10P77/2(Re(27), . . ., Re(2})), where 27, ..., 2} are the precision prn floating-point approx-
imations to z1, ..., zx. Similarly, let Imy be the column vector obtained by transposing
107772 (Tm(25), ..., Im(z})). Let Vi g2 be the k x (k + 2) matrix of precision prn/2
floating-point numbers whose first & columns are the same as [; and whose last two
columns are Rey and Imy respectively.

Vk,k+2 == [k Rek Imk

Suppose the rows of Vj pyo are (v1,...,vx). Form a lattice LV in R*t2 with basis
V1, ..., 0. Now use the LLL algorithm to find a reduced basis vy, ..., v for LV. See
(Lenstra et al., 1982).

Suppose v1x is (n1, ..., 1, €1, €2). Then > n;z; is a possible candidate sum. We accept
it as a candidate if it passes the tests, i.e. if its height is bounded by N and if it is
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not distinguishable from zero using the current precision. If one of these tests fails, then
our attempt to find a candidate has also failed. However, the following lemma shows
that if z1, ..., zx are actually linearly dependent over @@, then our method, applied on an
increasing sequence of precisions, will eventually find a correct relationship.

LEMMA 3.1. Suppose that, at o, z1,. ..,z are linearly dependent over Q. If prn is suf-
ficiently large, and vi = (n1,...,ng, €1,€2) is the first vector in the reduced basis found
by the LLL algorithm as described above, then

Znizi =0 at a.

ProOOF. The idea of the proof is that as prn is increased, false candidates get pushed
out of contention; eventually, the only possible initial vector in a reduced basis is a true
candidate, if there is any such.

We rely on the following result about reduced bases (see Lenstra et al., 1982).

If vmin is a minimal length nonzero vector in the lattice LV , then |v|? < 2F|umin|?.

Suppose z1, ...,z are linearly dependent over Q. Then there is an upper bound B,
valid for all prn, on the length of vmin, a minimal length nonzero vector in the lattice. In
other words, no matter how much prn is increased, there will be a nonzero vector in the
lattice of length no more than B. It follows that the first vector in a reduced basis must
have length < 2¥B, no matter how large prn is. Since the initial part of Vi ko 18 Iy,
there are only (2%B + 1)* vectors in the lattice which could possibly have length < 2% B.
The initial vector in a reduced basis must be one of these finitely many possibilities. But
if prn is sufficiently large, all of these will have size bigger than 2* B, except for those
which correspond to linear combinations of z1, ...,z which are actually zero at «. O

In fact it is also true that if there are d independent linear relationships between
z1,...,2, at a and if prn is sufficiently large, the first d vectors in the reduced basis
will give us d correct relationships. So we could take more than one candidate from the
reduced basis. This computationally useful possibility is ignored in the following, in order
to simplify the exposition.

Suppose we have found a candidate sum Zlf n;z;. Renumber z1, ..., z if necessary so
that ng is nonzero but is minimal, in absolute value, among the nonzero coefficients. We
now intend to use this to replace

(w1 —ezl,...,wk —ezk) :Ek =0
by
w1 —e* ) =I5y 1 =0

(wl—ezl,...,

together with the pair of algebraic conditions:

k-1
Nz — — E niz;
1

k—1
e —N,
Wy™ = H w;
1

We assume prn is large enough to satisfy conditions 1 and 2 given earlier. As before we
also assume that there is a solution of (Sy, Fj) = 0 in N¢(ax).
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Let (Z1, ..., Z) be any point in the z-box, and let (W1, ..., Wy) be any point in the
w-box. These are obtained by varying the numbers in a® by no more than e.

LEMMA 3.2. If Wy =% ... Wy 1 = %1, and Y% n;Z; = 0, and 1 = [F W =0,
then Wy, = e%*.

ProoF. The problem is to exclude the possibility that (Wy, Z) are on the wrong branch
of the algebraic solution. We have

k-1
ngZy = — E n;Z;,
1

and

k-1

NE —N, __ NpZy
wie = J[w, ™ =e
1
So
_Z
Wy =e“*n,

where 77 is an ngth root of unity. We need to show that n = 1.
If n # 1, then

1—nl=nm/N
There are values zx and wyg, among the coordinates of «, so that
| Zk — 21| < 2e, |[Wi — wy| < 2

and e®* = wy.

— [§] = |e — ne
_ |ezk _ eZk + eZk _ nezk|
< e — ek | Wy — wy

< |e®*|3e + 2e.

If |e**| > 1, we have |1 —n| < 5¢ and thus 7/N < 5¢, which is impossible.
On the other hand, if [e*| < 1, we get m|1 — n| < 5¢, and thus /N < 5¢/m, which is
also impossible, because m > 10~7"/% Thus p = 1 and W), = e%*. O

4. Wu Stratification

A subset S of C” is a d-dimensional manifold if for every point « in S there is a number
€ > 0 so that SN B.(a) is diffeomorphic to an open ball in C¢, where B,(a) is the open
ball of radius € around .

A stratification of a set is a decomposition of it into finitely many manifolds. The
manifolds in a stratification are called strata.

An algorithm is given below which uses Wu’s method for stratifying sets defined by
polynomial equalities and inequalities.
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4.1. CHARACTERISTIC SETS

The following definitions are taken from Wu (1984), derived, in some cases, from the
ideas of J.F. Ritt. Their purpose is to define a method of putting a system of polynomial
equations into triangular form.

Suppose we are dealing with polynomials in Q[z1, ..., %], and we order the variables
by importance

1 <X T <X <Tp.

The leading variable of a polynomial is the variable most important in the ordering
among those which occur in the polynomial. We will write lv(p) for the leading variable
of p.

We assume here, unless otherwise stated, that polynomials are written, in normal form,
as polynomials in their leading variable, with coefficients which are polynomials, also in
normal form, in less important variables. So if y is the leading variable of a polynomial p,
p would be in the form

Coy™ + -+ Co

where n is called the degree of p, and C,,, assumed to be nonzero, is called the leading
coefficient of p. (Of course the leading coeflicient may itself be a polynomial in variables
below y in the ordering.)

We will write le(p) for the leading coeflicient of p.

If p and ¢ are polynomials, ¢ is not a constant, and y is the leading variable of ¢, we
will say that p is reduced with respect to q if the degree of y in p is less than the degree of
y in ¢. It may happen that p is reduced with respect to ¢ although the leading variable
of p is more important than the leading variable of g.

For polynomials p and ¢, we will say p < g if the leading variable of p is less important
than the leading variable of ¢, or if the leading variables are the same and the degree of
p is less than the degree of ¢. If both the leading variables and the degrees of p and ¢ are
the same, we will say p ~ q.

Let S, = (p1,...,pr) be a list of polynomials. We will say that S, is an ascending set
if, for each 7 < r, the leading variable of p; is less important than the leading variable of
pit+1, and if, for all j <4, p; is reduced with respect to p;.

The next step is to put an order on ascending sets. If S, = (p1,...,p,) and Sy =
(q1,--.,9s) are ascending sets, we will say S, < S, if, for some k, p; ~ g1 and ... and
Pr ~ qr and pri1 < gry1, or if s <rand p; ~ ¢ and ... and ps; ~ ¢s.

Note that if we add a new polynomial to the end of an ascending set, the result, if it
is an ascending set, is lower in the ordering than the original.

The ascending sets are well ordered by the ordering described above. This means that
any descending sequence of ascending sets must be finite. This is useful to prove termina-
tion of algorithms. Any process which produces a descending sequence of ascending sets
must eventually terminate. If we have a process which produces a tree in which the nodes
are labelled with ascending sets and if the ascending sets on each branch are descending
and if no node has more than finitely many children, then the tree itself must be finite.

Suppose p and g are polynomials and the leading variable of p is y. The usual
pseudoremainder(p, q) is defined as follows. Suppose p has degree n in y and ¢ has de-
gree m in y. In case m < n, we let pseudoremainder(p,q) = gq. Otherwise,
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pseudoremainder(p, q) is the remainder after dividing p into lc(p)™ ""1q, considering
this as a polynomial in y with coefficients in the other variables.

Suppose S, = (p1, . . ., pr) is an ascending set , and ¢ is a polynomial. Define Rem(S,., q),
which is called the Wu remainder of ¢ with respect to S,., recursively in terms of the usual
pseudoremainder by

Rem((p1),q) = pseudoremainder(p;, q)

in the case r = 1, and, for r > 1,

Rem((p1,...,pj41),9) = Rem((p1, ..., p;), pseudoremainder(pj4 ¢, q))-

It follows from this that Rem(S,., ¢) is reduced with respect to every polynomial in S,
and satisfies an equation of the form

(H [Z“)q = Z dip; + Rem(S,, q)

i<r
where each I; is the leading coefficient of p;, and nq, ..., n, are some natural numbers,
and the d; are some polynomials.

If S, is ascending, and Rem(S,,q) = ¢, we will say that ¢ is reduced with respect to
S,. If S, = (p1,...,pr), then ¢ is reduced with respect to S, if, for each i, ¢ is reduced
with respect to p;, i.e. if the degree of the leading variable of p; in ¢ is less than it is in p;.

Note that if S, = (p1, ..., pr) is ascending, then, for each i, the leading coefficient of
p; is reduced with respect to S,, and also the partial derivative of p; with respect to its
leading variable is reduced with respect to S,.

DEFINITION 4.1. If S is a set of polynomials in Q[x1, ..., z,] we will say that an as-
cending set A is a characteristic set for S if

A is contained in the ideal generated by S
If q is any polynomial in S, then Rem(A, ¢) = 0.

If S is a set of polynomials, the notation S = 0 means the conjunction of the conditions
p=0forall pin S.

Note that if A is characteristic for S, then S = 0 implies A = 0; and also A = 0 implies
S = 0, provided that I(A) # 0, where I(A) is the product of the leading coeflicients of A.

If ascending set A; is contained in the ideal generated by S but is not characteristic,
then there must be a polynomial ¢ in S so that Rem(A1,¢) # 0. In this case, suppose
Rem(A1,q) = r, and A1 = (p1,...,pr). We can now use r to construct an ascending
set As which is below A1 in the ordering, but which is also contained in the ideal generated
by S. If r is a nonzero constant, or if the leading variable of r is less than or equal to all the
leading variables of A1, then we can take Ay = (r). Otherwise, pick 7 maximal so that the
leading variable of p; is less than the leading variable of r. Then let Ay = (p1,...,p;,7).

WU’S CHARACTERISTIC SET ALGORITHM. We can, given any finite set S of polynomials,
find a characteristic set A for S.

First pick any ascending set, A1, which is a subset of S and, among ascending subsets
of S, is minimal in the ascending set ordering. (A1 can be constructed recursively, starting
with the smallest polynomial in S.) Call such an Ay a basic set for S. Note that A1 may
not be minimal in the ideal generated by S.
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Then find Wu remainders of members of S with respect to A1. If all the Wu remain-
ders are 0, then A4 is characteristic. If not all Wu remainders are zero, use a nonzero
remainder to construct an ascending set As, as explained above, so that As is in the ideal
generated by S but As has lower order than A,. Continue this process until a character-
istic set is obtained.

The ascending sets generated in this way are decreasing in order, and the ordering on
ascending sets is well founded, so the process eventually terminates with a characteristic
set.

4.2. WU STRATIFICATION ALGORITHM

Let A, = (p1,...,p,) be an ascending set. Let I(A,) be the product of the leading
coeflicients of p1, ..., p,. (Recall that the leading coefficient of p; may be a polynomial
in variables below the leading variable of p;.) Let D(A,) be the product of the partial
derivatives of p1, ..., p, with respect to their leading variables, i.e.

D(4A,) = H Opi/0lv(p;).

Note that there are r distinct leading variables in A,, and that D(A4,) is the Jacobian
determinant of the matrix of partial derivatives of (p1,...,p,) with respect to these
leading variables. By the implicit function theorem, if D(A,) is not zero but A, = 0,
the leading variables are locally defined implicitly as functions of the other variables by
A, =0.

Thus the condition (A, = 0,1(A,) # 0, D(A,) # 0) defines either the empty set or an
n —r (complex) dimensional manifold in C”.

We can now use the Wu characteristic set algorithm as a tool to construct a stratifi-
cation for the zero set of any finite set of polynomials, S. The stratification for the zero
set of S will be presented as a finite tree labelled with conditions Aq, ..., Ay, with each
A; defining either the empty set or a manifold in C™. The zero set of S will be the union
of the manifolds defined by A1, ..., Ag. The tree will be called a Wu-tree(S = 0), and
it will be defined recursively.

WU STRATIFICATION ALGORITHM. Suppose we are given o finite set S of polynomials.
Let A, = (p1,...,pr) be the characteristic set for S, obtained by the characteristic sel
algorithm.

If one of p1, ..., pr is a nonzero constant, S = 0 is inconsistent, and the Wu-tree(S = 0)
will be a single node labelled with the impossible condition 1 = 0.

Otherwise, define A to be (A, =0,I(A,) #0,D(A,) # 0). Define Wu-tree(S = 0) to
be the tree which has root labelled with A, and which has subtrees Ty, ..., T, 71, ...
where, fori=1,...,r

>y Trs

7 7

T; = Wu-tree(S = 0, A, = 0,lc(p;) = 0)
7, = Wu-tree(S =0, A, = 0, 9p; /0lv(p;) = 0)

This construction terminates because the characteristic sets obtained are descending in
order on each branch. Note that even a basic set for (S, A, lc(p;)) or for (S, Ay, Op;/Olv(p;))
must be below A, in the ordering. This is because each p; in A, is reduced with respect
to (p1,...,pi—1), and thus Rem(A,,lc(p;)) = le(p;) # 0. Similarly, if p; = 0p;/0lv(p;),
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then Rem(A,,p) = p}. If p; has degree one in its leading variable, then p} is lc(p;). If p;
has degree more than one in its leading variable, then (p1, pa, ..., p;_1, ;) is an ascending
set which is below A, in the ordering.

WARNING. We would hope that in a stratification tree the boundary of a set defined at
a node would be the set defined by the subtree below the node. This does happen in nice
cases with this algorithm. But sometimes it does not happen. In fact, the set defined
at a node may have a lower dimension than the sets defined at subtrees of the node. In
exceptional cases, a node may be labelled with a condition which defines the empty set,
but it may have subtrees which define nonempty sets. O

Jetender Kang at Bath has implemented this algorithm, using the Axiom computer
algebra system. See Kang (1997).

It is not known what the average computational complexity of this algorithm is. In
practice it seems to behave like the zero structure decomposition given by Wu.

The Wu stratification described above, together with the use of the LLL algorithm
described previously, is sufficient to solve our problem. However, it seems that we do
not need the full strength of the Wu stratification, and that it would be computationally
useful to define a weaker, local version. This is done below.

4.3. APPROXIMATE LOCAL WU STRATIFICATION

If we are mainly interested in a stratification for a set in a certain bounded region of
C", we can prune the Wu-tree accordingly, and thus improve the computational behavior
of the Wu stratification. This improvement may be especially dramatic if we have a point
a in C" and we are only interested in the limiting case of a very small neighbourhood
around «. In this case we can pick a small neighbourhood of a and show, using interval
arithmetic, that certain semi algebraic sets do not intersect with the neighbourhood; if
that happens we do not need to consider branches of the tree corresponding to such sets.

As before we assume that we have a neighbourhood N (a*) of e, and € = 107" and
o is an n tuple of complex floating-point numbers with precision prn.

Let S be a finite set of polynomials. We assume S(a) = 0, and we are looking for a
stratification of the zero set of S near a.

In the construction of of Wu-tree(S = 0) we can prune branches which include condi-
tions ¢ = 0 where Fpp ¢ # 0in Ne(a¥).

We wish, however, to prune more radically. We will therefore adopt the following eager
annihilation rule.

possible(qg = 0, N.(a*))

This will only apply to polynomials which appear in conditions in Wu-tree(S = 0).

A somewhat alarming disadvantage of this rule is that it may give incorrect results
if the precision is not high enough. It has the advantage, however, that it collapses the
Wau-tree into one node labelled with some condition A(S = 0). We hope that A(S = 0)
will correctly describe the zero set of S near «. The rule will be used in a context in which
incorrect results will eventually be recognized as incorrect, and this will force increase of
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the precision, which (as will be shown) will eventually imply that any results of the rule
are correct.

APPROXIMATE LOCAL WU STRATIFICATION ALGORITHM. Suppose we are given a finite
set S of polynomials and neighbourhood N.(a*), as explained above. Find characteristic
set Ay = (p1,...,pr) for S. If, fori=1,...,r, we have

l_prn lc(pz) 7é 0
and

l_prn 8])1/811}(})74) 7é 0
in Ne(a®), then let A(S =0) be (A, =0,1(A,) # 0, D(A,) #0).

Otherwise let S+ be the union of S and {p1,...,p,}, and {le(p;) : (1 < i < rA
possible(le(p;)) = 0, Ne(a*))} and {0p;/0lv(p;) : (1 < i < r A possible(dp;/0lv(p;) =
0, Ne(a™)))}-

Then define A(S = 0) = A(S+ =0).

This algorithm, given a finite set S of polynomials, produces a condition A(S = 0) of
the form

(As - O,I(AS) 7é 0, D(As) 7é 0)

which either defines a manifold or the empty set, and which has the properties

Rem(A,,q) =0 for all ¢ in S
Forn 1(Ag) 7 0 and Fpr D(As) 7 0 in Ne(a*).

If, therefore, A;(a) = 0 we have found a manifold which includes a and which is
included in the zero set of S, which is what we want. In this case we will say that
A(S = 0) is correct.

However, the algorithm may produce A, with A,(a) # 0. In this case we will say that
the result is incorrect.

Suppose the set S of polynomials is fixed.

LEMMA 4.1. If the precision, prn is sufficiently large, the result A(S = 0) of the approa-
imate local Wu stratification algorithm is correct.

ProOOF. The ordering on ascending sets is well founded. The characteristic set algorithm
given previously defines an effective map from finite sets of polynomials S to their char-
acteristic sets ch(S), which, of course, are ascending. If the lemma were false, there would
be a finite set SO of polynomials so that

1. The lemma is false for SO
2. If S is any set of polynomials with ch(S) < ch(S0) in the ascending set ordering,
then the lemma is true for S.

Let ch(S0) = A, = (p1,...,pr). We assume that SO = 0 at «. So it must happen that
Ar(a) = 0. If I(A,)(a) # 0 and D(A,)(a) # 0, then for prn sufficiently large, we will be
able to prove this and the result of the algorithm will be

(AT - Oa [(AT) 7é 0, D(AT) 7é 0)
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which is correct.
Next suppose that some of the leading coefficients of A4, or some of the leading partial
derivatives are zero at «. In this case, we can increase the precision until

lC(Pi)(O‘) 7é 0 ¢>|_107% lc(pi) 7é 0
Op;/0lv(p;)(a) #0 Sk Opi/O0lv(p;) # 0 in N (o) fori=1,...,r

Form a new set S0+ by adding the terms le(p;) or 9p;/0le(p;) which do appear to
vanish at «, to S0, using this higher precision. The new set S0+ which is formed with
this precision is zero at a and has a characteristic set which is lower in the ordering
than the characteristic set of SO0. But S0 was a counterexample with a minimal order
characteristic set. So the result for S0+ and also for SO will be correct for sufficiently
large prn. We have a contradiction, and therefore the lemma is true. O

5. Solution of the Zero Recognition Problem among Elementary Numbers

Assume, as before that an elementary number ¢ is defined as g(a), and « is an elemen-
tary point satisfying the defining condition o € N.(a*) and (S, Ex)(a) = 0.

The process described below will either show that ¢ # 0, or will show that ¢ is zero
as a consequence of the algebraic and numerical information which we already have;
or, if this fails, will proceed by finding good candidate linear relationships and removing
exponential terms. If it does not prove possible to verify the correctness of the candidates,
it may be necessary eventually to backtrack, i.e. to reject the candidates, to increase the
precision and start over with the original problem, replacing the exponential terms which
have been removed.

We assume that prn is initially at some reasonably large value, for example, 20.

ZERO RECOGNITION PROCESS. Let S be the union of S, and {q}. Calculate A, the char-
acteristic set of S. We will use d to denote the number of exponential terms which we have
removed from the initial set Ey. Set d = 0 initially, so that Sy q = S, and Ey_q4 = E}.

1. Use Newton’s method on (S, iq, Ex_q) to decrease € to below 1077 and reset o*.

2. IfFprn g # 0 in Ne(o*), then return ¢ # 0.

3. Use approximate local Wu stratification to find A(S = 0), hopefully correct near .
If the result is A; with s = (n — (k — d)), and if Fprn J # 0 in N(a*), where J is
the determinant of J(Ag, Fx_4), calculate the topological degree of

(As, Ex—a)

over N (a*). If the result is nonzero, return ¢ = 0. In all other cases continue.

. S . o k—d
4. Apply the LLL algorithm to look for nontrivial integral linear combinations ) ]
n;2z; with height < N so that

k—d
possible <Z n;z; = 0, Ne(oz*)>
1

If such a candidate sum is found, renumber z1, ...,z g so that ng_4 #£0 and ny_4

is minimal in absolute value among the nonzero coefficients. Fxpand S by adding
k—d 8 -7,

> “nz; and H(igkfd/\nl>0) wpt — H(igkfd/\nl<0) w; ™ Setd=d+1. Set Fyx_4

to {wy — e, ... wi_q—e*4}. Go back to Step 3 with new (S, Ex_4).
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If no candidate sum is found, double prn, reset d = 0 and backtrack to Step 1 with
S set to be the union of S, and {q} and Ay, as initially calculated.

THEOREM b.1. If the zero recognition process given above terminates, it does so with the
correct answer. If the process does not terminate, then (z1, ..., 2, €1, ... %) conlains

a counterexample to Schanuel’s conjecture.

ProOOF. For the first part of the theorem we observe that the process can only terminate
at Step 2 or Step 3. For correctness at Step 2, we rely on the supposed correctness of our
interval arithmetic procedure.

Suppose we get termination at Step 3. This means that we have performed approximate
local Wu stratification near « and found A(S = 0) to be (As = 0, I(As) # 0, D(A;) # 0).
A(S = 0) implies S = 0, and S includes the original S, which was used to define the
elementary point a. The defining condition for a was

(Sr, Fx) =0
in N.(a*). E;_4 may not be currently equal to Fy but by Lemma 3.2,
SZO,Ek,d:0:>Ek:0

in N.(a*). Thus A(S = 0), Ej_q = 0 implies (S,, ) = 0 in N.(a*).
The inequalities of A(S = 0) are always true in N.(a*). So

AS = O,Ek,d =0= (ST,Ek) =0

in N.(a™).

We have t,,, J # 0, where J is the Jacobian determinant of (A, F_4). This implies
that the topological degree of (A, Ex_4) over N.(a*) is either plus or minus one or zero,
and that the degree is nonzero iff

(36 € Ne(a"))(As, By —q)(8) = 0.

This 8 must be the same as « since 3 satisfies a condition which is stronger than the
condition which we supposed uniquely defined «. Since ¢ is also in S, we must have

q(8) =0

and thus the conclusion ¢ = 0 is correct.

In order to prove the second part of the theorem, assume that the process does not
terminate. Each loop between Step 3 and Step 4 eliminates one exponential term, so there
can never be more than k such successive loops. Thus prn is doubled an unbounded
number of times in the nonterminating computation. Since Step 2 never succeeds, we
must have ¢(«) = 0 and thus ¢ = 0.

Suppose that there are actually d independent linear integral relationships among
Zlyeeoy Rk

If prn is sufficiently large, then after backtracking from Step 4 to Step 1, d loops through
Steps 3 and 4 will, by Lemma 3.1, produce d correct candidate linear relationships. At
this point S(«) = 0 and the remaining z1, ..., zk_4, the arguments to the exponential
function, are linearly independent over the rationals at «.

After going into Step 3, we get A(S = 0), which is

(As - O,I(AS) 7é 0, D(As) 7é 0)
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Lemma 4.1 implies that if the precision is sufficiently high, these conditions are true at .

If s > n—(k—d), we have a counterexample to Schanuel’s conjecture, since z1, ..., zx_4
are linearly independent at a.

It is not possible to have s < n — (k — d) since (As, Fx_q4) = 0 implies (S,, Ey) = 0,
and the latter has nonsingular Jacobian.

It is claimed that unless z1, ...,z is a counterexample to Schanuel’s conjecture, it
is also not possible to have J(A,, Ey_4) singular at «. For the sake of a contradiction,
suppose this did happen.

Note here that (As, Fx_4) = 0 determines a single point in N (o).

Let J be the result of replacing e* ..., e*~< by the variables wq, ..., wy_4 which are
equal to them if E;_4 = 0. Suppose we found the Wu stratification of the solution set of
(As =0,J =0,S, = 0). The point « is in this solution set. So a would be described by
some condition of the form

(BT - 07 [(BT) 7é 0, D(BT) 7é 0)

where Rem(B,,J) =0 and Rem(B,,q) =0 for all ¢ in A;.

We cannot have r < s since the equations A; = 0 are independent at «. We cannot
have r > s unless this is a counterexample to Schanuel’s conjecture. Suppose r = s.
B, = 0 implies J(As, Ex_4) is singular. Since the A4 are independent, this must mean
that some w; —e* in Fy_4 has a gradient in N.(«*) which is a linear combination of the
gradients of B, and the rest of Fj_4 on the solution set of B, = 0 near a. Remove this
dependent term from Iy_g to get Ey_(qi1). (Byr, Er_(4+1)) = 0 at «, and since there
are less equations than variables, there must be a curve through o on which B, and
Ej_(441) are identically zero. E_4 is also identically zero on this curve, since it is zero
at one point, and the curve is orthogonal to the gradients of the terms in Ejy_ 4. A is
identically 0 on this curve since A; is reduced to zero by B,.. But this is impossible since
we supposed that (As, Ex_4) = 0 determined a single point in N¢(a*).

We have decided that (A, Ex_4) has a nonsingular Jacobian at «. For prn sufficiently
large, we can prove Fpy, J # 0in Nc(a*). The topological degree method will then apply,
and will give termination.

Looking back over the discussion, we can see that the only case in which termina-
tion can be avoided is when (z1,..., zx, w1, ..., wy) is a counterexample to Schanuel’s
conjecture. [

It follows from the above theorem that if Schanuel’s conjecture is true, the elementary
numbers are a computable field. Also, the real elementary numbers are a computable
real closed field.

5.1. IMPLEMENTATION

There is a zero recognition program, written in Reduce. It does not use topological
degree to show existence of nonsingular solutions of n equations in n unknowns, but
instead applies standard tests for convergence of Newton sequences. The program has
only been tried so far on about 50 examples, the most interesting of which is

¢ = 4atan(1/5) — atan(1/239) — /4

which is zero, but which, we might say, is not obviously zero.
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So far, on small problems of this type, termination (with the correct answer) has always
been obtained within a few minutes.

The possibility of backtracking which is built in to the algorithm to ensure correctness
has not yet been used. That is, it has not yet happened that a false candidate linear
relationship has been produced by the LLL process. This suggests the following difficult
and interesting problem in applied number theory: how can we set the thresholds in such
a way that no false candidate is ever produced? From a theoretical point of view, this
problem looks to be a little bit harder than settling the Schanuel conjecture.

Although the program has not failed yet on any small problems, it is clear that it is
possible to create problems involving very large or very small numbers which will require
such large precision that their solution will be infeasible.

There may be some other computational difficulties (such as counterexamples or near
counterexamples to Schanuel’s conjecture) but so far none such have appeared.
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