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Abstract, This paper considers the problem of
factoring polynomials over a variety of domains, We
first describe the current methods of factoring
pol ynomials over the integers, and extend them to the
integers mod p. We then consider the problem of
factoring over algebraic domains. Having produced
several negative results, showing that, if the domain
is not properly aspecified, then the problem is
insoluble, we then show that, for a properly
specified finitely generated extension of the
rationals or the integers mod p, the problem is
soluble. We conclude by discussing the problems of
factoring over algebralce closures.

1. Introduction.

The problem of factoring polynomials is one that
has received great attention in computer algebra.
Not only is factoring of great inherent interest and
utility, but it is also required by a great many
other algorithms, e.g. integrati'on. In fact, when it
comes to algebraic numbers, factorisation is a
prerequisite for ensuring unique representations -
the only way we can discover how to represent 61/2 in
terms of 2'/2 and 3'/2 13 to observe that x2-6
factors over the extension of the rationals
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generated by 2172 and 31/2‘ While factoring over the
integers, or over algebraic extensions, is the most
common requirement, recently factoring over other
domains has been required. Indeed the investigations
that lead to this paper were prompted by the authors'
interests in integration, which leads to
requirements to factor over algebraic extensions of
polynomial domains, over algebraic extensions of
finite fields, and over algebraic closures of such

cbjects,

2. Factoring over polynomial domains.

One of the major advances in the field was the
development of effective methods for factoring
univariate polynomials with integer coefficients
(originally due to Zassenhaus[1969], and
implemented, inter alia, by Musser[1971]). This
process has subsequently been refined in a variety
of ways (see, for example, Wang[1978] and [Mocre &
Norman,19813, and the
Zassenhaus[19811), but the fundamental principles

recent ideas of

are the same. We first outline the univariate method

since the multivariate process relies on it.

1) The problem i3 reduced to factoring square-free
polynomials. This 1is deone by square-free
decomposition, to which there are many references,
e.g. [Yun,19771.

2) A 'suitable' prime p is chosen.

3) The coefficients of the polynomial to be factored
are reduced mod p.

4) This polynomial is factored (over the integers
mod p) by Berlekamp's[1967] algorithm.
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5) This factorisation is 'lifted' to one mod p°, for
suitably large n;

6) This is examined to yield the factorisstion over
the iIntegers. This is not necessarily a trivial
process, since one factor over the integers may be
represented by several factors mod p", and we need
some way of combining factors mod p" into factors
over the integers. Collins{1979) discusses the

average complexity of this process.

Since Berlekamp's method”  will factorise
polynomials over the integers mod p, this means that
the problem of factoring univariate polynomials over
the prime fields (viz., Q and the fields of integers

modulo p) was solved.

3. Multivariate Polynomials.

The next problem to be consldered is the
factorisation of multivariate polynomials. The
process (due originally, 1in the case of
charaoteristio 0, to Wang and Rothschild[19751]) is
in fact wvery similar to that for factoring
univariate polynomials over the integers, and
proceeds as follows:

1) Ensure the polynomial 1is square-free (doing

square-free decompositions over the integers mod
p is slightly tricky, since, for example {xP-1) =
0, but it can be done - see algorithm square-free-
decompose in Davenport[1981] for one way).
2) Find values for all but one of the variables such
that the result of substituting them in leaves
one with a square-free polynomial., Since there
are only finitely many values of any variable
which do not change the sguare-free nature of a
pelynomial, this can always be done over the
integers: the rare case when it camnot be done
over the integers modulo p is discussed below.
3) Factor the resulting univariate polynomial by the
methods discussed above.

4) 'Lift' this factorisation back to a multivariate

% Though, if p is large, an alternative method
[Berliekamp, 19701 is better.
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cne by methods analogous to those used in the
univariate case. This can be done either variable
by variable or by lifting all the variables at
19781, and Zippell[1979] has some
interesting remarks on the interaction of this
with the
polynomial.

once [Wang,

process sparsity of the original

There is a potentially serious problem here,
inasmuch as the factorisation in step (3) may
yield many factors, several of which correspond
to cne multivariate factor, In the worst case, one
may need to try all combinations of the results
of extending the factors
finding the multivariate factors (or asserting

univariate before
that the multivariate polynomial is irreducible).
We shall not discuss this problem, often known as
the fcombinatorial explosion®, further here,
except to note that z variety of methods have
been proposed, e.2. in [Wang,1978], to minimise the

cogt.

There remains the possibility that step (2) above
cannot be completed over a finite field - for
example nt value of y leaves x{x+1)(x+y)} square-free
over the integars modulo 2. The solution to this is
to make the ground field larger, by taking an
algebraic extensicn of it, and to admit values of ¥
from this larger ground field. This leaves us with a
univariate polynomial over an algebraic extension of
the integers modulo p, which can be factored by the
methods of Berlekamp[1970]. This can then be 'lifted’
to a multivariate factorisation exactly as above, so
that we now have a multivariate factorisation of the
original polynomial over the larger ground field.
This can be converted to one over the original
ground field by considering the nerm of each factor
- more precisely, having lifted our factorisation
from kle3[x] to k[@][x][y], we then consider this as
a factorisation over k[xJ{yl[8], and take norms with
respect to the extension by 6,
Trager[1976].

extremely rare, but nevertheless, as we have seen, it

as described by
Of course, in practice this case is

does not pose any theoretical embarrassment, though

it is likely to cost a great deal in computer time,
gince our ground field is now an eixtension of the
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integers module p, rather than being just the

integers modulo p.

Hence we can factor multivariate polynomials over
any prime field,

Furthermore, since K[x,y] = K[x][yl, we can factor
over pelynomial extensions of prime fields. As a
1949, p.
73], this extends to rational function extensions,

since, once we have cleared denomipators, factoring

result of Gauss's Lemma [van der Waerden,

in K[x1l[y] is the same as factoring in K(x)[yl. Hence

we can factor polynomials over any finitely

generated, purely transcendental extension of any

prime field, and, since any polynomial can only
involve a finite number of items, we can drop the

restriction "finitely generated™ in the above.

4, A Negative Result.

This therefore leaves algebraic fields as the

next major problem. However, it is certainly not
possible to solve the factorisation problem (ie.
that will factorise

infinitely generated

produce an algorithm any

polynemial) for algebraic

extensions of the integers, as is shown by the
fellowing example (due to FrBhlich & Shepherdson

[19561),

Let f be a function from the natural numbers into
themselves whose lmage is a recursively® enumerable
but not recursive set {such functions exist [Kleene,
19381). Then let K be the field Q(pl{%,, pi(3). -.).
where Py is the i-th prime. Then consider attempting
to factorise the polynomial x2—pn. This has one
factor if Pn is not a square in X, i.e. n is none of
the f{i), and two factors if n is one of the f(i).
Hence any algorithm to factor polynomials, even of
this very simple kind, over K would enable us to

®For the benefit of these not familiar with
recursive function theory, this means that we
can compute f(n) for any natural number n, but
there can be no procedure for deciding if a
given natural number m lies in the range of f,
i.e. whether or pot m=f(n) for some n.
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solve the gquestion "is n one of the f(i)", which is
known to be inseluble,

In case the above example be thought too abstract,
here is a simple illustration of the fact that the
ability to factorise polynomials (even quadratics)
over infinitely presented {fields is deeper than
might be thought. Define g(n) to be 1 if 2n is the
sum of two primes, and -1 otherwise, g is clearly a
computable function. Let L be Q(g(1)'/2, g(2)1/2, ..
and consider the factorisation of xZ+1 over L. It has
one factor if L = Q,

(that every even number is the some of two primes) is

i.e. the Goldbach conjecture

true, and two factors if the conjecture is false,
This is more embarrassing, in some ways, because L is
definitely finitely generated (being elther Q or
Q[1]), so a straight-forward restriction to being
finitely-generated will not help here: we must
insist, in some way, that the field be explicitly

finitely generated,

While the above could be regarded as pedantry
("after all, who would actually state a preblem like
that™), it has an interesting consequence. Classical
algebra texts (e.g. van der Waerden[1949]) show that,
in the presence of a descending chain cendition on
divisors (which is nearly always present), the
existence of greatest common divisors is equivalent
toe unique factorisation. Now it i8 certainly easy to
construct greatest common divisors in the domains
while
This

widely-held belief among computer algebraists that

construct
formalisation of the

discussed above, we cannot

factorisations, is a

factorisation is "inherently" more complicated than
g.c.d. computations.

5. Algebraic Extensions

we have a field L =
k(t1. ey Ly 84y ey Byl which we shall alsc write as

S0 let us now assume that

K(sq, wu 8p), where the t; are all tranScendental
over k(t,, wes ty_q7), and the s; are algebraic, with
given minimal polynomial, over K(sjy, . 51_1). This
choice of order, placing all the algebraics after all
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the +transcendentals, is not a real limitation,
because the only constraint on the position of an
algebraie is that it should come after everything in
Suppose that we wish to
factor a (potentially multivariate) pelynomial over
L. If L is of characteristic 0 (i.e. if k is the

rational numbers), there is no intrinsic problem -

its minimal polynomial.

Trager's [1976) algorithm sqfr-norm can be used to
reduce the problem to factoring a ({generslly much
larger*) polynomial in the same variables over K,
Having factored this
recover the factors of the

which we know how to do.
pol ynomial, wWe can
original pelynomial over L, as in his algorithm alg-

faator,

Life is not so simple if L has finite

echaracteristic, There are two reasons for this:

a) (only applicable if n=0) There may not be enough
elements of L, because sgqfr-norm searches through
L leoking for a substitution which will produce a
square-free norm, and it is possible (but only in
a finite number of cases) for a substitution not
to yield a square-free norm;

b) The whele theory of algebraic field extensions is

in  the of

characteristic p, because an algebraic extension

much more complicated case
can now be inseparable (see van der Waerden[1949]
Section 38). K[@] is said to be an inseparable
extension of K if the minimal polynomial of 6 is
irreducible over K, but has multiple rcots in
K{el, To see how this can happen, consider K=k[x],
where k 18 the finite field with p elements, and x
is transcendental over k, and let 6 be defined by
6P-x. Then the minimal polynomial for 8, viz. yP-x,
is irraducible over K, but over K{8] it factors

into (y-8)P,

These twoe problems require different solutions.
Problem (a) is solved by observing that this can
only ocour if L is finite., This implies that n=0, and
that L is an algebraic extension of a field with p

+ Even if the minimal polynomials for the s;
contain none of the t., the degree of the
polynomial to be factored over the integers has
been multiplied by the degrees of all the
minimal polynomial s.
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elements, In that c¢ase we can reduce the problem to a
univariate one, as described in section 3 {including,
if necessary, the ground field extension process),
and then factor the polynomial thus
produced by the method of Berlekampl 19701

univariate

Problem (b) requires a rather different approach.
We first observe (see van der Waerden[1549] for
details) that an element can only be inseparable if
its minimal polynomial is a polynomial in xP, In fact
we can Split an inseparable extension into several
parts - a separable extensicn followed by one or
more purely inseparable viz. those
generated by an e¢lement with minimum polynomial of
the form yP-z. It is a fact (often attributed to
Krull{1953), but actually proved by Endler[1952])

that one can dispense with the inseparable extension

extensions,

by a change of generating elements, This is not hard
to see in any special case*, and Endler provides an
the of
representation. Of course, once one has a separable
the be
into the
the

algorithm for performing change

repreaentation, problem
that
problem

polynomial can

transformed representation, and
solved

resulting factors transformed back,

factorisation there, and

5. Algebraie Closures,

We have shown how one can factor polynomials over
an explicitly finitely generated field, and this
often what is required. However, one sometimes wants
to factor over algebraic closures. A good example of
this is integration, where the ground field has to be
te be algebraically closed
Risch(1969], where it is shown that 1/(x2-2) is only
integrable if the ground field contains 2172y, The
previous work is not of any direct help here, since

considered (see

algebraic closures are infinitely generated.

# For example, if k is a field of p elements, and
we consider k[x][y], where x is transcendental
over k, and y satisfies yP=x, then this field is
1sorgorphic to klyl, under the mapping vy > y & x
-; y L
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This problem was discussed by Risch[1969, p. 178]
who used the Kronecker btrick of mapping x; = td '
where d is larger than any integer oceurring in the
problem, to reduce the problem to a univariate one.
Further details, and a cost analysis, are presented

by Trager[ 1981, chapter 31

S0, let us suppose that we wish to factor a
polynomial in Xy, .., X, over the field K, where K is
an explicitly finitely generated extension of a
prime field®,

1) Ensure the polynomial is square-free, as in step
(1) of Section 3,

Reduce the problem to a univariate one, as in step
{2) of Section 3. Call this univariate pol ynomial
f(x), defined in K[x].

Factor this over Kixl, as in Sections 3 and 5. So
£(x) = £(x)falx) ... ().

Until f is the product of linear factors, extend K

2)

3

4)
by a root of one of the non-linear factors, and
re-factor all the factors over this larger field.
Lift this back to a multivariate factorisation in
Xq4 eny Xy, @8 in step (4) of Section (3), Note that
the "combipatorial explosion® mentioned there is

5)

quite likely to cccur in this case, because we
have ensured that our original factorisation is
into linear factors, all combinations of which
will need to be tried before one can assert that
the original polynomial is irreducible over the
algebraic closure (if indeed it is).

*# The reader may object that we need only
consider K to be a transcendental extensien of
a prime field, since the algebraic closure of an
algebraic extension of K is the same as the
algebraic closure of K. This is perfectly true
mathematically, but is a pitfall
computationally, since algebraic numbers only
have a unique representation after one has
chosen a basis, As an example, consider
factoring x°+4 over Q[il. It factors as
(x+2i)(x-2i). But if we try to factor it over §,
we find that is does not factor over Q, so we
introduce a new algebraic number 8 defined by

=—l, and factor the polynomial as (x+9)(x-8).
If we try to use this as an extension of Qi) we
are in ¢trouble, since 1 and B are not
independent,
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7. Conclusions

We have shown that, asauming the problem is stated
factor

multivariate polynemials over any finitely generated

in a suitably explicit form, we can
extension of a prime field, or over the algebraic
closure of such a field. In practice, this means that
any 'reasonable! factorisation problem is solved in

principle.

This is not to say that factorisation is a dead
area. Many problems of implementatlion remain, and
there is much that has to be done before all the
algorithms described
available to the user.

in this paper can be made

Also, while these algorithms all work, and while
parts of them are in use and proving relatively
efficient, other parts are very expensive. In this
thinks of the
explesion” 3, and

Trager's[1976] algorithm sqfr-norm of Section 5. It

context particularly

of

one
Teombinatorial section
is the authors' intuitive feeling that, in general,
the exponential nature of sqfr-norm is inherent in
the problem, but they have no proof. Indeed, there is
remarkably little known about the complexity of
factoring as a whole, though Yun{1977] deals with the
square-free part of factorisation algorithms, and
Collins[1979] studies the

the univariate factor-combining process.

"average" complexity of

Twe particular areas that the authors feel
deserve attention are:
1) The 1ideas of Zassenhaus[1981]. Can they be

adapted to eliminate the combinatorial explesion
of section 3.

The of Wang[1976]
Rothsachild[1976]. These deal with the factoring
of multivariate polynomials over algebraic number

2) ideas and Weinberger and

fields (whereas, of course, our section 5 can deal
with arbitrary extensions), but they are often
more efficient when they apply. It is obviously
possible to achieve some compromise between them
it would be
investigate the details.

and sqgfr-norm interesting to
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