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By means of Grobner basis techniques algorithms for solving various problems concern-
ing subfields K (g) := K(g1,...,9m) of a rational function field K (x) := K(z1,...,Zn)
are derived: computing canonical generating sets, deciding field membership, computing
the degree and separability degree resp. the transcendence degree and a transcendence
basis of K (x)/K(g), deciding whether f € K(x) is algebraic or transcendental over K (g),
computing minimal polynomials, and deciding whether K (g) contains elements of a “par-
ticular structure”, e.g. monic univariate polynomials of fixed degree. The essential idea is
to reduce these problems to questions concerning an ideal of a polynomial ring; connec-
tions between minimal primary decompositions over K (x) of this ideal and intermediate
fields of K(g) and K (x) are given. In the last section some practical considerations con-
cerning the use of the algorithms are discussed.
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0. Introduction

Rational function fields K(x) := K(z1,...,%,) arise in various contexts within math-
ematics and computer science. Two examples are invariant theory (Kemper, 1994) and
the design of diffractive optical systems (Aagedal et al., 1996). In the latter, multivariate
decomposition of rational functions proves useful for inverting rational functions.

For performing practical calculations in subfields K(g) := K(g1,...,9m) of K(x) it is
desirable to have algorithms for solving problems like field membership or the computa-
tion of a canonical generating set. The algorithms given in Sweedler (1993) and Kemper
(1993) are mainly concerned with questions like calculating minimal polynomials over
K(g) and finding the transcendental/algebraic degree of an extension K(x)/K(g). In ad-
dition to these algorithms for deciding the field membership problem are given. Both
Sweedler and Kemper make use of Grobner basis techniques with the introduction of
additional (“tag”) variables and a lexicographical order of the terms in x, leading to
difficulties in practical computations.

The motivation of this paper on the one hand is to find alternate solutions to the prob-
lems discussed by Sweedler and Kemper in order to broaden the spectrum of effectively
tractable problems; on the other hand, we want to give new algorithms for questions
concerning subfields K(g). For this we associate to K(g) an ideal in the polynomial ring
K(g)[Z], thereby reducing problems such as computing a canonical generating set of K(g)
over K or determining the type of the extension K(x)/K(g) to problems concerning an
ideal in a polynomial ring. More precisely the problems treated in the text are:
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o Compute a finite canonical set of generators of K(g) over K.

o Given f € K(x) decide if f € K(g), and in the affirmative case compute h €
Ky, ..., ym) with f = h(g1,.- ., gm)-

o Given f € K(x) decide if f € K(g), and in the affirmative case determine all
heK(yi,.-. ¥m) with f = h(g1,...,9m)-
o Compute the transcendence degree t of K(x) over K(g). In case of

(t = 0) compute the degree [K(x) :

K(g)] and the separability degree [K(x) :

K(g)]s;in case of
(t > 0) compute a transcendence basis of K(x)/K(g) and decide whether this
extension is separably generated. In the atfirmative case choose the transcen-
dence basis to be separating.

e Given f € K(x) algebraic over K(g) find the minimal polynomial of f over K(g).

o Given f € K(x) decide whether f is algebraic or transcendental over K(g).
e Given parameters A,..., A4, f(A,x) € K(A,x), K(g) < K(x) where K is alge-
braically closed decide if there is a specialization (A) — (a1,...,a,), a € K such
that f(a,x) € K(g).

In Section 4, connections between intermediate fields of K(g) and K(x) and minimal
primary decompositions over K(x) of the ideal associated to K(g) are given.
To illustrate the algorithms several examples are given throughout the paper. More-
over, the last section deals with some practical considerations concerning the use of the
algorithms.

NOTATION

Throughout the text the following abbreviations are used:
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any field where calculations can be done effectively

the rational function field K(z1,...,2,)

the subfield K(¢1, ..., gm) of K(z1,...,2n)

the product Zy -...- Z,

the multi-exponent (pi1, ..., tn), i.e. ZE = Z4H .0 ZpFn

the weight of u, namely > | p;

the ideal in the polynomial ring K[Z] generated by H C K[Z]

the set of terms in the variables x (with a term being understood as a
monic monomial)

the head (leading) term of the polynomial p w.r.t. a specified order
the head (leading) coefficient of the polynomial p w.r.t. a specified
order

for t1 € T(Y),t2 € T(Y,Z)\ T(Y) the term order < satisfies ¢t1 < o
the residue class of p € K[Z] modulo a given ideal

the saturation of the ideal I with respect to the polynomial p, namely
the set {q € K[Z]|3p € Nsg: ptg e I}

the quotient field of the integral domain R
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1. Canonical Sets of Generators and the Field Membership Problem

The aim of this section is to give a constructive answer to

PROBLEM 1. (“canonical generating set”):

Given K(g) < K(x) compute a finite canonical set of generators C(g) of
K(g) over K, i.e. K(g) = K(g’) if and only if C(g) = C(g).

It turns out that the solution to this problem proposed below can also be used to solve
PROBLEM 2. (“field membership”):

(A) (“non-constructive”) Given f € K(x) decide if f € K(g).
(B) (“constructive”) Gwen f € K(x) decide if f € K(g), and in the affirmative case
compute h € K(y,...,ym) with f = h(g).

An approach to Problem 2(B) using tag variables has been given in Sweedler (1993).
Sweedler’s algorithm makes use of a Grobner basis computation which depends on f. In
Kemper (1993) an algorithm is presented which is closely related to Sweedler’s results,
but the computation of the required Grobner basis is independent, of f. After performing
the precomputation, i.e. calculating the Grobner basis, the answer to Problem 2(B) can
be computed efficiently by a kind of reduction of f. The really hard part of Kemper’s
algorithm is to perform the calculation of the Grébner basis. Here a “lexicographical block
order” (cf. Section 1.4) and tag variables have to be used, i.e. the number of variables
required for the computation of the Grobner basis depends on the number of elements
in the given generating set of K(g). The solutions to Problem 2(A) and 2(B) proposed
below make use of a Grébner basis computation in K(x)[Z] independent of f and do not
require the use of tag variables or a particular term order.

1.1. INVOLUTION BASES

First we shortly resume Emmy Noether’s notion of “involution basis” defined at the
beginning of this century which allows a partial solution of Problem 1. The involution
form used here also proves useful for determining the degree of separable algebraic ex-
tensions (cf. Section 3.1):

Let g1,...,9m € K(x), K(x) algebraic of degree d and separable over K(g). In partic-
ular, xq,...,z, are algebraic over K(g). If u,...,u, are transcendental over K(g) we
can define the minimal polynomial m(Z) € K(g,u)[Z] of .7, u;z; € K(u,x). Over a
splitting field L of m(Z) we have

d d
m(2) = [[(2 - (X wey) = [[(2 = 0y wioi(ay)
i=1 i=1
with ¢1,...,04 € Gal(L/K(g, u)). Hence ®(u, Z) := m(Z) is a homogeneous polynomial
(a form) in u, Z of degree d. ® is called the involution form of K(g).

THEOREM 1.1. (NOETHER, 1915, SATZ III) Let g1,...,9m € K(x), K(x)/K(g) alge-
braic of degree d and separable, ®(u, Z) the involution form of K(g), C(g) the set of
coefficients of ®(u, Z) excluding elements of K. Then
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(i) C(g) is finite and uniquely determined by K(g),
(i) K(C(g)) = K(g).

Proor. (i) is immediate from the definition.
(il) As ®(u,Z) is irreducible over K(g), it is irreducible over K(C(g)) < K(g), i.e.
K(x) : K(C(g))] = d and K(C(g)) < K(g) < K(x) implies K(C(g)) = K(g).O

For char(K) = 0, K(x)/K(g) not algebraic, Noether suggests a technique called the
“Ubertragungsprinzip” which we shall not repeat here. Instead in Section 1.2 an approach
to Problem 1 is given which holds in arbitrary characteristic and does not depend on
K(x)/K(g) being separable or algebraic. For further details on involution bases we refer
to the original work Noether (1915).

For a simple concrete example take the field of rational functions fixed by the cyclic
group C3 ~ Az = {id,(123),(132)} < S3 acting on Q(x1,z2,x3) by permutation of
x1, X2, 3. Here the corresponding involution form immediately computes to

®(u, Z) = (Z— (w1 +uszetuszs))-(Z—(u1xatuszstuser)) (Z—(uiss+usz +uszs)).

In more complicated cases Algorithm 3.2 in Section 3.1 can be applied to compute the
involution form.

1.2. CANONICAL BASES BY MEANS OF GROBNER BASES

Given g1,...,9m € K(x), Z1,..., Z, indeterminates we can define the ideal
(Z1 =21y, Zn — 30) NK(g)[Z].

The basic idea is to compute a reduced—and therefore unique—Grdbner basis of this
ideal and to use the coefficients hereof as a canonical generating set. Of course this idea
requires some elaboration. need

LEMMA 1.2. Let

(1) g1 =%, 9m = 7= € K(x),

(2) P:={peK[x]:pprime and p | d; for somei € {1,...,m}},
(3) d:=1l,epP(Z))™ with n, € Nxo arbitrary,

(4) 1:=(n(Z

) — g1 dl(z)7 s ,?’Lm(Z) —9m dm(Z)>ﬂK(g)[Z], and

Then for f € K(g)[Z] the following statements are equivalent:

(i) f(Z1,...,2Z,) € J.
(i) f(z1,...,2s) =0.

In particular, JAK(g)[Z] is prime, and J = (Z1 — x1,. .., Zn — zn) NK(g)[Z].

PrOOF. (i)=(ii) Let f € J. Hence there exists a p € N5 with d#f € I, i.e. there are
1y - - Gm € K(g)[Z] with

d“f = Z% ~(ni(Z) — g; - di(Z)),
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and we have (d*f)(z1,...,2,) = 0. As d € K[Z] \ {0} the integrity of K(x) implies
f(xly ) =0.
()= () Let f(Z1,...,2n) € K(g)[Z] satisfy (ii). By multiplying f with a suitable
¢ € K[g] we obtain f = ¢- f with f € K[g][Z].
It is sufficient to prove
f € (ni(Z) — g1 - di(Z),. .. ,nm(Z) — gm - dm(Z)) : d*IK[g](Z],

because multiplication with ¢! then yields f = ¢=!- f € J. So let
m
Zaﬁu-_ [T(gsx)
=1

Interpreting f as polynomial in m + n variables we have

Fr(X), .. gm(X), 21,y @0) = 0= F(gi (D), ..., 9m(2Z), Z1,. .., Zn).

Hence

0= f(gl(x) + (g (Z) - gl( ))7 ce 7gm(x) + (gm(Z) - gm(x))v Zly sy Zn)

m

=D oy Z H — 6i(x)))"

=1

Expanding the product we obtain only one term not involving a factor of the form
(9i(Z) — gi(x)); namely, we have

m

0= au,- z&(mg@-(x))"i ©Y g, (03,(2) - g@(x)))

i=1 Ju=1

with g;, € Klg1(x),...,9m(x),91(Z), ..., 9m(Z), Z]. The last equation can be written as
B m
0=F+> G- (5:(Z) - g:(x)
i=1

with §; € K[g1(%), ..., 9m(x),91(Z),. .., 9m(Z),Z].
Multiplying with a suitable power product of the d;(Z) we can remove the denominators
of the g;(Z) and for a suitable v € N5 we have

0=d"f+ Z@' - (ni(2) — g:(x)di(Z))
with §; € K[g1 (%), ..., g9m(x),Z], ie.
Fe(n(Z)—g1-di(Z),...,nn(Z) = gm - dm(Z)) : 4™ IK[g][Z]

as required.

Using the equivalence (i) <= (ii) primality of J is trivial, and it remains to verify
J={Z1 —a1,...,Zn — zn) NK(g)[Z]:

C From the implication (i)==-(ii) we know

Vfed: f(Zy—(Zy—x1),. ., Zm — (Zm — ¥m)) = 0.

Expanding f in the same way as f above the claim follows immediately.
2 A consequence of the implication (ii)=(i). O
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For the effective calculation of J we remind the reader of

LEMMA 1.3. Let I, J, d be as in Lemma 1.2, d = szl q; any factorization of d,
and let Y1,...,Y, denote new indeterminates.

PrOOF. The proof is a straightforward generalization of the proof of the special case
r =1, g1 = d which can be found in Becker and Weispfenning (1993, Proposition 6.37).

Actually any factorization, including the trivial one, is possible in the above lemma;
unfortunately, we do not know of a criteria to decide when using a non-trivial factorization
is more efficient than keeping a single polynomial (cf. also the remarks in Section 2.1 of
Kemper (1993)).

After having fixed a term order we want to use those coefficients of the reduced Grébner
basis of .J which are not contained in K as a canonical generating set for K(g) over
K—from Lemma 1.2 we know that these coefficients do not depend on the particular
generating set of K(g) chosen. Moreover, as Buchberger’s algorithm does not involve
operations which require an extension of the ground field we only have to assure that
the coefficients of the reduced Grobner basis are not contained in a proper subfield of
K(g). We prove this by giving an algorithm for expressing arbitrary elements in K(g) as
a rational function in the coefficients of the Grébner basis.

According tg Lemma 1.2 for 5 € K(g) the polynomial n(Z) — % - d(Z) is contained in

J. So n(Z) — %d(Z) must reduce to zero modulo the Grébner basis. The key for getting

the desired representation in terms of g is the simple but useful fact given in

REMARK 1.4. Let p; € K[Z], 44,...,A, parameters, h; = T € K(A),i = 1,...,s,

G a Grobner basis of (G)<K[Z] w.r.t. an arbitrary term order, a1,...,a, € K with
Hle di(Oq, e ,OLT) 75 0.

Then specializing A; — «;,j = 1,...,r in the normal form of ) ;_; h;(A)p; modulo
G yields the normal form of >_7 , hi(a)p;.

PROOF. As GG does not contain elements involving the parameters A the condition
Hle di(a1,...,0r) # 0 also prohibits the denominators occurring successively during
the reduction from vanishing. Hence a reduction step after applying the specialization
A; — o either yields a valid reduction step in K[Z] or an “empty” reduction, i.e. zero is
subtracted. Therefore we obtain a correct reduction of >°;_, h;(a)p; when specializing
Aj — a; after having computed the normal form of }_;_; h;(A)p; modulo G.

As specialization does not introduce additional terms further reductions are not pos-
sible, i.e. we have reached the normal form of >; , h;(a)p; modulo G.O

Obviously, choosing h in Remark 1.4 as linear polynomials in A causes the resulting
normal form to be a polynomial of degree <1 in A, too.

So, we simply reduce n(Z) — A - d(Z) modulo the Grébner basis, thereby reaching a
normal form N(A) depending linearly on A. Solving N(A) = 0 for A we obtain a rational
expression of % in terms of the coefficients of the Grobner basis according to the above
remark—mnote that Lemma 1.2 guarantees the solution f of N(A) = 0 to be unique, so

the equation cannot be trivial: n(x) — f - d(x) = 0 = n(x) — f - d(x) implies f = f.
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Next to expressing an element of K(g) in terms of the coefficients of the Grébner basis
the procedure sketched can be used to decide whether an element f € K(x) is contained
in K(g):

LEMMA 1.5. Let J, K(g) be as in Lemma 1.2, G a Grébner basis of J w. r.t. any term
order, n,d € K[Z], d # 0, A a formal parameter, N(A) the normal form of n — A - d
modulo G. Then the following statements are equivalent:

(i) it € K(g).

(ii) The linear equation N(A) =0 has a solution in K(x).
PROOF. (i)==>(ii) As 52 € K(g) we have n(Z) — 5
Thus the claim follows immediately from Remark 1.4.

(ii)=>(i) Note that the solution is uniquely determined, as otherwise Remark 1.4 would
imply Yo € K(g) : n—a-d € J — a contradiction to Lemma 1.2. Moreover, a solution in
K(x) must be a solution in K(g), because all coetficients involved are contained in K(g).
Thus the claim is an immediate consequence of Lemma 1.2 and Remark 1.4.0

d(Z) € J according to Lemma 1.2.

Observe that in the above discussion the assumption that the Grébner basis is reduced
is only required for the uniqueness of the generating set, in particular we have

LEMMA 1.6. Let J, K(g) be as in Lemma 1.2, G any Grébner basis of JK(g)[Z]. Then
the coefficients of G form a generating set of K(g) over K.

After fixing a term order =< on T(Z) an algorithm for finding a canonical generating set
now informally consists of two steps:

STEP 1: Compute the reduced Grébner basis G of J<K(g)[Z] w.r.t. =<.
STEP 2: Extract the coefficients from G.

For practical purposes the computational difficulty lies in the effective execution of the
first step, i.e. the calculation of a Grébner basis in K(g)[Z].

1.2.1. COMPUTING A GROBNER BASIS IN K(g)[Z]

The basic problem for the effective computation of a Grébner basis over K(g) is the
correct, treatment of algebraic relations of the generators. One approach for dealing with
these “syzygies” is to introduce additional variables for the generators, so-called “tag
variables” (cf. Sweedler (1993), Kemper (1993)). As additional variables often increase
the cost of the Grébner basis computation considerably we aim at avoiding this con-
cept. In fact, this is always possible, including the case of g1, ..., g being algebraically
dependent. We suggest two techniques for accomplishing this:

o Calculating in K(x)[Z].
o Introducing “tag parameters” for the generators of a field.
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Tag variables still prove useful for determining the algebraic relations of {g1,...,9m},
however. We will make use of this fact in Section 1.4 when replacing explicit computations
in K(g) by computations in a suitable residue class field.

Cualeulating in K(x)[Z]): Given polynomials py,...,p € K(g)[Z] we can clearly cal-
culate a reduced Grébner basis of (p1,...,p)<IK(x)[Z]. As already mentioned above
Buchberger’s algorithm does not involve operations requiring an extension of the ground
field, thus all computations can be understood as computations in K(g), i.e. all coetfi-
clents are still contained in K(g), and the result can be interpreted as a Groébner basis
of (p1,...,p)IK(g)[Z].

If one in interested in expressing the result of an operation explicitly in terms of a
given generating set of the field a slightly different approach can be used:

Introducing “tag parameters” for the generators of a field: Treating the generators as
formal parameters g1, ..., ¢, does not cause any harm as long as we restrict ourselves to
addition, subtraction and multiplication, as these operations are defined for all elements
in K(g). Before inverting an element we have to be sure, however, that the according
element is not zero. For checking whether an expression is zero we can proceed as above,
i.e. we temporarily replace the “tag parameters” ¢p,...,¢m by the actual generators
le((;‘)),..., ZZ((:)) of K(g), thereby revealing “hidden syzygies”. If the replaced operand
does not equal zero in K(x) the substitution is undone. This kind of “temporary replace-
ment” can be used whenever we have to decide whether an element is zero—although
this kind of performing computations in K(g) seems a bit unwieldy it enables us to avoid
the use of tag variables. Moreover, the result of each operation is expressed in terms of
the given generators of the field.

Applying this technique to Buchberger’s algorithm essentially means to identify the
leading coefficients of polynomials, as these are the only elements in K(g) which have to be
inverted: both before calculating S(yzygy)-polynomials and before using polynomials for
reduction we determine the “real leading coefficients” of these polynomials by temporarily
replacing the tag parameters in the “potential leading coefficients” as described above. If
this substitution causes a potential leading coefficient to vanish the remaining polynomial
is treated in the same manner. So we finally obtain the zero polynomial or a polynomial
with an invertible leading coefficient.

We are now in the position to state
THEOREM 1.7. Algorithm 1.8 solves the problem of finding a canonical generating set.

This is immediate from the construction.

Recall that an ideal in a polynomial ring over a field has only finitely many reduced
Grobner bases (cf. Becker and Weispfenning (1993, p. 515)). So one can think of a canon-
ical generating set which is independent of the term order chosen by taking the set of
coefficients of all reduced Grébner bases as a canonical generating set. We do not want
to go into details here, however.

ALGORITHM 1.8.
In: ¢ = Z—;,...,gm: Z_Z € K(x)

1, --,qr € K[Z] as in Lemma 1.3
a term order < on T(Z)
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Out: C: g finite canonical generating set of K(g) over K

begin
Create new indeterminates Yq,...,Y,.
Select a term order < on T(Y1,...,Y,).
T« the block order satisfying ZEY using < on K[Z] and < on K[Y]
I — U2 {ni(Z) — g5 - di(Z)} U U;:l{)/}qj -1}
G «— the reduced Grébner basis of I - K(x)[Y,Z] w.r.t. C
G — GnNK(x)[Z)
# G contains the reduced Grébuer basis of J (cf. Lemma 1.2) w.r.t. <. #

C— (UQGG{coeﬁicientS ofg}) \K

return C
end

Usually, the canonical basis C computed by Algorithm 1.8 is highly redundant, i.e.
one can remove many elements from C and the remaining set still generates K(g). Hence
it is appropriate to apply some kind of reduction in order to reduce the size of C. As
one does not want to give up uniqueness this reduction must be deterministic. Basically
one can think of using any kind of strategy here. A natural way of performing the
reduction is to select minimal elements from C after introducing a linear quasi-order =<
on K(g). Assuming all elements in C to be reduced the introduction of a linear quasi-
order can be accomplished by using a term order < on T(D, N, x), as any term order <
on T(D, N,x) induces a linear quasi-order on K[D, N,x] (see Becker and Weispfenning
(1993, Theorem 5.12)):

™M™ e o Nomy4+D-dy <N -no+tD-do.
di T do
Using a graded order, i.e. a refinement of the total degree order, and setting

deg (%) := max({deg(n),deg(d)}) (where ged(n,d) =1)
we obtain a quasi-order on K(g) respecting the total degree of field elements, for example.

1.3. DECIDING FIELD MEMBERSHIP

To check whether an element of C is contained in the field generated over K by a subset
of C already Algorithm 1.10 below, which uses Lemma 1.5 to solve the field membership
problem can be applied: if computations in K(g) are performed by calculating in K(x)
the algorithm solves the non-constructive field membership problem, implementing Al-
gorithm 1.10 by means of “Introducing ‘tag parameters’ for the generators of a field”
as described in Section 1.2.1 enables us to solve the constructive version of Problem 2.
Again by construction we have

THEOREM 1.9. Algorithm 1.10 solves the problem of field membership.
Before looking at a concrete example we give another solution of the constructive field

membership problem which enables us to give a characterization of all possible rep-
resentations instead of computing only one representation in terms of the generators.
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AvcoriTaMm 1.10.

In: ¢ = Z—;,...,gmz Z—:: € K(x)
1, --,qr € K[Z] as in Lemma 1.3
a term order < on T(Z)
f=3eKx)
Out: h: h € K(g) and h =t £, if f € K(g),
h=1, else

begin
G — a Grébner basis of J<K(g)[Z] as defined in Lemma 1.2 w.r. t. <
# for a possibility to effectively compute G see Algorithm 1.8 #
Create a formal parameter A.
N — A- D « the normal form of ny(Z) — A - dy(Z) modulo G
if D=0 # and therefore N # 0 (see the proof of Lemma 1.5) #
then h — L
else h — %
if h ¢ K(x)
then h — L
fi
fi
return h
end

1.4. FINDING ALL REPRESENTATIONS BY MEANS OF TAG VARIABLES

In contrast to Algorithm 1.10 tag variables are used here; the additional variables
enable us to express the algebraic relations between the generators. These “syzygies” are
the key for characterizing all representations:

LEMMA 1.11. Let f =% € K(g), h € K(11,..., 1) with f = h(g1,...,9m),
S:={pcK[T]:p(g1,---,9m) =0}

Then for h € K(T) the following statements are equivalent:

(7/) il(glyugm):f ~
(i) 3s € S,dr €K[T]\§: h=h+ £

PROOF. (i)==(ii) Let A be a formal parameter, N(A4) the normal form of n — A4 - d
modulo G. From Lemma 1.2 and Remark 1.4 we can conclude that both ~(g) and h(g)
satisfy the non-trivial (see the proof of Lemma 1.5) linear equation N(A) = 0. Hence we

have h(g) —h(g) = 0, i.e. the numerator of h—h must be contained in S; the denominator

fNote that “=" here denotes equality in K(x); if tag parameters are used then h contains the repre-
sentation of f in terms of the generators, i.e. the equality is not syntactical.
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of h — h is not contained in S, of course, because neither the denominator of h nor the
denominator of h is.
(ii)=>(i) Trivial.O

The syzygies (and as will be explained below all representations) can be computed by
means of a “tagged version” of Lemma 1.2:

LEMMA 1.12. Let

(1) a1 = Z_;v"'vgm = Z_Z EK(X)7

(2) P:={p€K[x]:pprime and p | d; for somei € {1,...,m}},
(3) d:= Hpepp”P with v, € Nyg arbitrary,

(4) T,..., Ty new indeterminates (“tag variables”),

(5) IT = (?’Ll — T1 . dl,. I 2 it Tm . dm>§]K[T,X], and

(6) Jr = Ir : d*<K[T,x].

Then for f € K[T, x| the following statements are equivalent:

(7’) f(Tlv'--miyx) c Jr.
(7’7’) f(glv" '7gmyx) =0.

PrOOF. The proof is essentially the same as in Lemma 1.2, so we do not go into details
here and restrict ourselves on pointing out that for proving (if)==(i) the expression

i+ (g —=T1), ., Ton + (gm — Tn)s 21, -+ - T)
plays the part of

F(91(0) + (91(Z) — 91(%)), - -+, gm (%) + (9m(Z) — gm (X)), 21, - -, Zn)
in the proof of Lemma 1.2.0

For effectively calculating Jr we can proceed as in Lemma 1.3:

REMARK 1.13. Let Ir, Jr, d as in Lemma 1.12, d = H;Zl q; any factorization of d,
Y1,..., Y. new indeterminates.
Then Jr = I+ YVign — 1,...,Yeq, — 1)) NK[T, x].

Proor. As in Lemma 1.3.0

Thus, keeping the notation above, a generating set for Jr can be computed by cal-
culating a Grobner basis of (ny — Ty - d1, ..., — Ty - dim, Y1 -qn — 1,.. ., Y - gr — 1)
using any term order satisfying Y > T and Y > x followed by removing all poly-
nomials containing any of Y from the result (see, e.g. Becker and Weispfenning (1993,
Proposition 6.15)).

For our purposes we also require x > T, i.e. there are three blocks: Y > x> T

The additional T-block enables us to characterize the syzygies we look for:

REMARK 1.14. Using the above notation and any term order satisfying Y >» x > T
let G be a Grébner basis of It + (Y1 -q1 — 1,...,Y, - ¢, — 1). Then
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(i) GNK[T,x] is a Grobner basis of Jr w.r.t. the induced order,
(i) GNKI[T]is a Grébner basis of S = Jr NK[T] w.r. t. the induced order.

Proor. (i) follows immediately from Remark 1.13 and what has been said above.
(ii) follows immediately from (i), Lemma 1.12, and the “elimination property” of
Grobner bases (e.g. Becker and Weispfenning (1993, Proposition 6.15)).0

In Kemper (1993) a lexicographical order within the x-block is used, thereby allowing
to derive a solution of Problem 2 by means of the given Grébner basis. For this a “chain
of minimal polynomials” is derived from the Grébner basis (cf. Lemma 2.3).

The algorithm given below uses a different approach. It enables us to solve Problem 2
by means of the given Grobner basis without having to put any restrictions upon the
orders within the blocks.

For deciding field membership it is natural to check for % € K(x) whether

Ip,q€K[T]: n-gq—d-p€ Jrand q & Jr NK[T], (1.1)

i.e. ¢ must not be a syzygy of the generators to keep the denominator from vanishing.
If S = JrNKJ[T] as above, L :=Quot(K[T]/S) denotes the residue class field of K[T]g,

7 : K[T][x] — Lx], Zaﬁ-gfiH Z? g

the canonical homomorphism, we can reformulate (1.1) in an obviously equivalent but
algorithmically more tractable way:

Jeel: n(n)—a-n(d) € (x(Jr))<L[x].
The key for checking this effectively is given by

LEMMA 1.15. Let G be a Grobner basis of Jp w. 1. t. a term order that satisfies x > T.
Then m(G) \ {0} is a Grobner basis of (n(Jr))<L[x] w. r. t. the induced order.

PROOF. Let G ={p1,...,pi}, pi = G @ + 32, . o op 2 with ay, o, a0y, € K[T].
If ay,, €S and p;o # 0 for some 7 € {1,...,1} then
G = {pi — ag, 2} U (G \ {p:})

is a Grobner basis of Jr, too, because both
HT(p;) = HT(ay, ) - 20 € (HT(Q)) and G C Jr
according to Remark 1.14 (ii).

W.l.0.g. we can therefore assume a,, , € S fori=1,... .1 and Ay, o €5 fori> [. Now
let
f=by, -2+ > by-a* € (n(Jp))L[x], by, # 0.
v<vo
If g0 | 220 for some i < | then f reduces to f — ﬂ(szo y - Z¥0 744 modulo 7(G) \ {0}.
i,0

On the other hand, i.e. there is no 7 < [ satisfying g0 | 2¥°, “by clearing denominators
in f” we obtain f € Jr, i.e. f must be top-reducible modulo G N K[T], because G is
a Grobner basis of Jr. If this reduction would “eliminate” z¥° the numerator of b,
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would be contained in S; a contradiction. But if 2%° would not be “eliminated”, we
would obtain a polynomial which is not top-reducible modulo G \ K[T] again. So by
induction we had b,, = 0; a contradiction. Therefore f must be top-reducible modulo

©(G)\ {0}.O -

Using Remark 1.4 an algorithm for solving the problem of constructive field member-
ship now informally can be stated as follows:

STEP 1: Compute a Grébner basis G of Jr w.t.t. any term order satisfying x > T.

STEP 2: Compute a normal form N(A4) of numerator(f) — A-denominator(f)
modulo 7(G).

STEP 3: Check if there is a solution h € LL of the linear equation N(A4) = 0, thereby
yielding a representation of f.

The effective computation of these steps is rather straightforward:

e Step 1 can be performed by computing a Grobner basis G as described in Re-
mark 1.14.

e Reading ¢ € @ as a polynomial in K[T][x] we get a Grébner basis 7(G) C L[x] of
(w(Jr)) by means of Lemma 1.15. Computing a minimal or reduced Grébner basis,
the default in most computer algebra systems, in Step 1 enables us to identify the
leading monomials without further computations (cf. the proof of Lemma 1.15).
The computation of the normal forms in Step 2 then consists of calculations in
K(T)[x] which can be performed by most computer algebra systems.

e To solve the linear equations in Step 3 one is tempted to solve m- A+ b =0 in
K(T, x)[A], i.e. to divide by m. To recognize 0 and remove superfluous terms after
cancelling out common factors of the numerator and denominator of m we replace
the numerators of m and b by their normal forms modulo G N K[T], which is a
Grobner basis of S according to Remark 1.14 (ii), before doing so.

A more detailed description of these steps is given in Algorithm 1.17 below, and we can
state

THEOREM 1.16. Algorithm 1.17 solves the problem of constructive field membership.

Moreover, let S and < be as in Algorithm 1.17. Then S is a Grébner basis of S w.r. t.
= as defined in Lemma 1.11.

PrOOF. The theorem follows immediately from the above results; note that the algorithm
does not have to handle the case D = 0 = N separately, because in this situation we
had ¢ - dy, € Jr for some ¢ € K[T]\ S and (g - dy,)(g,x) # 0 — in contradiction to
Lemma 1.12. O

We remark that the “reduction step” of the algorithm for the field membership problem
given in Kemper (1993) in general is more efficient than the one in Algorithm 1.17; as
instead of a Grébner basis a “chain of minimal polynomials” (cf. Lemma 2.3) is used for
reduction there, usually less polynomials are involved. The price for this is the necessity
of a lexicographical order within the x-block, however.
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ALGORITHM 1.17.
Ini g1=%,...,0m = 3= €K(x)
Q- qr € K[X] as in Remark 1.13
a term order < on T(x)
f=3teKx)
Out: (1, 9): heK(T) and h(g) = £, if f € K(g),
i}: 1, else
S: a Grébner basis of S as in Remark 1.14 w.r. t. <

begin
Create new indeterminates Ty, ..., 1, Y1,..., Y.
Select term orders < on T(T) and =’ on T(Y).
T« the block order satisfying TExXCY using < on T(T), < on T(x),
and =" on T(Y)
G—Uli{n—T-dib VUi {Y; ¢ — 1}
G — a Grobner basis of (G)<K[T,x,Y] w.r.t. C
S — GNK[T]
G — (GNK[T,x])\ S
Create a formal parameter A.
N — A- D — the normal form of ng — A - dy modulo G C K(T)[x]
Cancel out common factors of the numerator and denominator of D.
p . normal form of numerator(D) modulo S
denominator(D)
normal form of numerator(N) modulo S
denominator(N)

N —

if D=0
then h — L

N
else h — 35

if h ¢ K(T)
then h — |
fi
fi
return (h, S)
end

1.5. EXAMPLE: THE CANONICAL GENERATING SET OF Q(x1, 2, 23)4°

The field of invariants Q(z1, o2, x3)*2 considered in Section 1.1 is given by Q(s1, s2, s3,v)
where
$1 =%1 + X2 + 3,
S2 = T1%2 + 13 + X273,
83 = T1T2T3,
v= (22 — x1)(x3 — 1) (T3 — T2).

So the ideal to consider for computing the canonical generating set of Q(sy, sa, s3,v) is
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(Zl + ZQ + Z3 — 81,2122—|—le3 + ZQZ;_), — 82,212223 — 83,
(22 = 21)(Zs = 21)(Z5 — Z5) — v)2Q(x)"*[Z].

Using Algorithm 1.8 with the graded reverse lexicographic order where Zy > Zs > Z3 we
obtain (either by means of tag parameters or by subsequently applying Algorithm 1.17)

{ 2,2 12313 — 78189 + 983 — 'UZQ N ) \ 181282 — 4852 + 38185 — 810

2 812 — 339 812 — 389 2 812 — 389 ’

2.2 12313 — 73189 + 983 + v - ) . 181282 — 4852 + 38185+ 810

2 812 — 339 812 — 389 2 812 — 389 ’
2223_15182—933—11 2_13152—9534—11 3_35153—322
2§12 — 33y 2 512 — 33, 812 — 389

Zl+ZQ+Z3—81}

from which the canonical generating set can be read off immediately.

2. Finding the Type of a Field Extension

In this section we give a solution to

PROBLEM 3. (“type of a field extension”): Given K(g) < K(x) find the transcendence
degree t of K(x) over K(g). In case of

(t =0) compute the degree [K(x) : K(g)] and the separability degree [K(x) : K(g)]s; in
case of

(t > 0) compute a transcendence basis of K(x)/K(g) and decide whether this extension
is separably generated. In the affirmative case choose the transcendence basis to be
separating.

2.1. ALGEBRAIC AND TRANSCENDENTAL EXTENSIONS

Using Kalkbrener and Sturmfels (1995, Theorem 1) we can compute the dimension of J
(which is prime according to Lemma 1.2) by determining the cardinality of any maximal
strongly independent subset of T(Z) modulo J. So if G is a Grébner basis of J with
respect to any term order and X a maximal subset of T(Z) satisfying T(Z) NHT(G) =0
then dim(J) = |X|. The dimension of J is of interest, as we have

LeMMa 2.1. Let J, K(g) be as in Lemma 1.2. Then

(i) K(x) ~ Quot(K(g)[Z])/J), and
(ii) the transcendence degree of K(x) over K(g) is equal to dim(J).

Proor. The homomorphism defined by
¢ K(x) — Quot(K(g)[Z]/J),x; — Z;/T
as a homomorphism of fields is trivially injective. As Quot(K(g)[Z]/.J) is generated by
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Z1/1,..., 2, /1, 51/1,. .. ,Gm/1 over K, the surjectivity follows from

¢i(x) _ 1i(Z) — (ni(Z) — 9:(x)di(Z)) _ ni(Z) _ (@)
1 &:(Z) &:(Z) di(x) )

As J is prime, every maximally independent set modulo J has dim(J) elements
(Becker and Weispfenning, 1993, Proposition 7.26). So the claim follows from the fact
that the residue classes of a maximally independent set modulo a prime ideal P<K[Z)]
form a transcendence basis of Quot(K[Z]/P) over K (Becker and Weispfenning, 1993,
Lemma 7.25).0

Remember that every strongly independent set modulo an ideal is in particular inde-
pendent modulo that ideal. So the subset X from above forms a transcendence basis of
K(x)/K(g) (see the proof of Lemma 2.1), and we can state a partial solution to Problem 3:

ALGORITHM 2.2.
In: G: a Grébner basis of J (cf. Lemma 1.2) w.r. t. an arbitrary term order
Out: (t, B): t: the transcendence degree of K(x) over K(g)
B: g transcendence basis of K(x) over K(g)
begin
B+
for i€ {1,...,n} do
if T({ZJ IS BU {.’17@}}) n HT(G) =0
then B «— BU {:17@}
fi
od
t — |B]|
return (t, B)
end

Now assume dim(J) = 0, i.e. K(x)/K(g) is algebraic. In this case one would like to
compute [K(x) : K(g)]. Knowing a minimal Grébner basis G (no p € G is top-reducible
modulo G \ {p}) of J w.r.t. a lexicographic order, e.g. after applying Procedure 4.1
from Faugere et al. (1993) in order to convert the given Grébner basis into a reduced
Groébner basis G w.r. t. a lexicographic order, one can easily derive the required minimal
polynomials (cf. Kemper (1993, Theorem 1)):

LEMMA 2.3. Let J, K(g) be as in Lemma 1.2, G a minimal Grébner basis of J w.r.t.
a lezicographic order such that Zy < ... < Zyn, 1 € {1,...,n}.
Then selecting m; € GNK(g)[Z1, ..., Z;] of minimal positive degree in Z; after replacing

sy Zimq with xq,...,x;_1 and making the leading coefficient monic, interpreting m;
as polynomial in Z;, yields the minimal polynomial of x; over K(g)(z1,...,2i—1).
PrOOF. If m;(Z;) denotes the minimal polynomial of z; over K(g)(x1,...,®;_1), then

clearing denominators in m;(Z;) by multiplying with a suitable ¢ € K(g)[z1,...,%i—1]
after replacing 1, ...,x;,—1 with Zy,...,Z;_1 yields m;(Z1,...,2;) € K(g)[Z4,. .., Zi]
with m;(x1,...,2;) =0, Le. my(Z,...,Z;) € J according to Lemma 1.2.
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As obviously g(z1,...,z;_1) # 0 the leading coefficient of m;, interpreted as a polyno-
mial in Z;, does not vanish when replacing 24, ..., Z;_1 with z1,...,2;_1. Hence 7m; ¢
(GNK[Z4,...,Z;_1])<K(g)[Z], and the reduction of 7; modulo G involves a polynomial
of positive degree < deg(m;) in Z;. Let 1; denote the polynomial in GNK(g)[Z4, ..., Z;]
of minimal positive degree in Z;.

Requiring G to be minimal prevents the leading coefficient from 7h;, interpreted as a
polynomial in Z;, from vanishing when replacing Z1,...,Z;_1 by x1,...,2;_1, because
otherwise the “leading coetficient” would be contained in J thus implying top-reducibility
of 1; modulo G \ {m;}. So replacing Z1,...,Z;—1 with #1,...,2;_1 in /1, yields a non-
trivial polynomial in K(g)(z1,...,2:—1)[Z;] of degree < deg(i;) having z; as a root.

To compute the minimal polynomial of x; over K(g)(z1,...,#;—1) we can thus select
a polynomial of minimal positive degree in Z; from G N K(g)[Z,...,Z;]. Replacing
Zhy. .oy Zi—q with @1, ..., 2;_1 and making the leading coefficient of Z; monic then yields
the desired minimal polynomial.O

Note that if K(x)/K(g) is separable the computation of a Grébner basis w.r. t. a lexico-
graphic order for determining [K(x) : K(g)] is not necessary; in this case it is sufficient
to compute (the degree of) the corresponding involution form (cf. Section 1.1) by means
of Algorithm 3.2 in Section 3.1. To check whether K(x)/K(g) is separable we can, e.g. by
means of Algorithm 3.2 from Section 3.1, determine the minimal polynomials my, ..., my,
of z1,...,2, over K(g). Then the separability of K(x)/K(g) is equivalent to [}, m; # 0
where m/ denotes the formal derivative of m; (e.g. Bosch (1993, p. 109, Lemma 1)).

In case of char(K) = p > 0, a “chain of minimal polynomials” as in Lemma 2.3 can
be used to compute the degree of separability [K(x) : K(g)],: Let m;(Z) be the minimal
polynomial of x; over K(g)(#1,...,%;-1), 7 € N> maximal with m; = m(ZP™) for
some m;(Z) € K[Z], i = 1,...,n. Then [K(x) : K(g)]s equals []_, (deg(m;)/p") (e.g.
Bosch (1993, p. 111, Lemma 6)).

Hence for K(x)/K(g) algebraic the problem of finding the type of a field extension
can essentially be reduced to the computation of a minimal Grébner basis of J w.r.t. a
lexicographic term order.

If K(x)/K(g) is not algebraic, then a separating transcendence basis, in case of ex-
istence, can be selected from 2{#1-@n} (e.g. Winter (1974, Theorem 4.3.11)). So after
computing the transcendence degree t of K(x) over K(g) we can proceed as in the al-
gebraic case to check for all (?) subsets X C {z1,...,z,} having t elements, whether
K(x)/K(g)(X) is a separable algebraic extension, thereby obtaining a separating tran-
scendence basis if and only if K(x)/K(g) is separably generated, of course an exhaustive
search like this is practical for small values of ¢ only.

Combining the results in this section in the obious way we obtain a complete solution
to the problem of finding the type of a field extension. As the implementation of the
individual steps is straightforward we omit giving an explicit algorithm, and restrict
ourselves to stating

THEOREM 2.4. The problem of finding the type of a field extension can be solved effec-
tively.



160 J. Miiller-Quade and R. Steinwandt

2.2. EXAMPLE: A REPRESENTATION OF Z/6Z OVER Fjy

The mapping
010
0 01
4 0 0
defines a three dimensional representation of the cylic group with six elements over Fs.
The corresponding field of invariants Fs(z, v, z)Z/ 5% over F5 is generated by

Z/6Z — GL(3,F5),1 —

x% +y? + 2% oy + Az +yz, 2t + oyt + 2t 23y + dad P,
2® +y° + 2%, 2%y + 4w’ + 2 ).

)Z/GZ

In order to find the type of the extension F5(z,y, 2) /Fs(z,y, 2 we consider the ideal

XCHY?+ 22 4+ 4@ + 42 + 22), XY +4XZ + Y Z + d(zy + daz + y2),
XY 4 Z0 4 4@ + oyt + 2h), XY +4X 723 1 V3Z + A(aPy + 422 + 2),
XO 4+ V04 78 4 a(a® + 45+ 29),
XY +4XZ° + Y Z + 4(xPy + 402° + 4°2)) s (9, 2) /%2 X, Y, Z].
As in Section 1.5 the saturation can be omitted here, as the generators are polynomials.

Using the lexicographical term order with X > Y > Z we obtain the following reduced
Grobner basis:
daty + 42322 + 2%y + 32t + yts +4y?2? 5
{ w53z 4 4xdyzd + dadySz + adyz® + xS 4 4ayd2®
aby 4+ a2 + 4a0?yd + da2® + 4y5z + 4220 73
w53z 4 4xdyz® + dadySz + ady2® + xS 4 4ay3 2P
4ryP + dad2* + oty + 1328 + 9523 4 49420
w53z 4 dadyzd 4 4adydz 4 ady2® + ay2d 4 dayd2S
otz + 4xPy? 4+ 45223 + ayt 4 Y322 + Ayt 75
w5y3z 4 4xdyzd + dadySz + ady2® + xS 4 4ayd2®
420 2 + $5y2 + 12z + 4.’17y6 + 4y522 + yZG 3
w53z 4 4xdyzd + dadySz + ady2® + xS 4 4ay3 2P
2523 4 AgPyt 4 Axts5 4 @By 4 y52t 4 Aysb
w53z 4 4adyz3 4 4adydz 4 ady2® + ay2d 4 dayd2S

Z04-(4a? + 4y? + 422 24 + (Y + 2?2 + y?2?) 2% + day?s? }

Z/62

From this we immediately recognize Fs(z,y, 2)/Fs(z,y, 2) as a separable algebraic

extension of degree 6.

3. Computing Minimal Polynomials and Finding Special Elements
3.1. COMPUTING MINIMAL POLYNOMIALS
As for K(x)/K(g) algebraic and separable the degree of the involution form is equal

to [K(x) : K(g)] (cf. Section 1.1), we can compute the degree of a separable algebraic
extension by solving
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PROBLEM 4. (“finding minimal polynomials”):
Given K(g) < K(x) and f € K(x) algebraic over K(g) compute the minimal polynomial
of f over K(g).

If f =72 € K(x) is algebraic over K(g) with minimal polynomial
1-1
mp(Z) =Z'+> 7', o €K(g)
i=0

and G a Grobner basis of J as in Lemma 1.2 then the normal form of

-1
fi(en2) = (d(Z)) ((f(Z))l Y o <f<Z>>")
=0

modulo G is zero, because fi(a,Z) € J according to Lemma 1.2.

If on the other hand f;(e, Z) reduces to zero modulo G for some ay, . ..,x_1 € K(g)
then clearly f(x)l + Zi;cl) o - (f(x))z =0.

By considering Remark 1.4 we can find the minimal polynomial of f by checking
successively for | = 1,2,..." whether the normal form of f;(, Z) modulo G vanishes for
some a € K(g). This can be checked efficiently by solving the linear equation system we
get when equating all coefficients in the normal form of

to zero ¥, A formal parameters. As we check small values of [ first the uniqueness of
the minimal polynomial guarantees that the solution of the first solvable linear equation
system is unique. Furthermore, as all of the coefficients involved are contained in K(g),
it is sufficient to look for solutions in K(x), of course.

We are now in the position to state an effective algorithm for solving Problem 4, and
by construction we have

THEOREM 3.1. Algorithm 3.2 solves the problem of finding minimal polynomials.

ALGORITHM 3.2.

In: G: a Grébner basis of J (cf. Lemma 1.2) w.r. t. an arbitrary term order
f =4~ € K(x) algebraic over K(g)
Out: p: the minimal polynomial of f over K(g)

begin
Create a new indeterminate Z.

TIf K (x)/K (g) is algebraic of known degree it is sufficient to consider the divisors of [K (x) : K(g)], of
course.

$One could be tempted to conclude from J being prime and d(x) # 0 that it is sufficient to consider
the normal form of (f(Z))' +% é;(l) A; - (f(Z))". However, the latter in general is a rational function, i.e.
the factor d(Z)! is needed for clearing denominators.
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l—1
repeat
Create a formal parameter A;_1.

@y (@) + S 4 @y )
Zﬁ a,(Ao,. .., Ai—1) - Z% — the normal form of f modulo G
A—{(ao,...,oq—1) € K(x) |V : aulog,. .., cp—1) =0}
£ A£D
then select (ayp,. ..,al 1) cA
p— Zl 4+ ZJ OO‘J

fi
[—1+1

until A # ()

return p

end

Note that Algorithm 3.2 as stated above does not decide whether an element f is
algebraic over K(g). For this an upper bound for the degree of the minimal polynomial
of f has to be known.

One (somewhat unpleasant) possibility is to determine a transcendence basis of
K(x)/K(g) as described in Algorithm 2.2; if a transcendence basis is known an upper
bound can be derived by applying the techniques for computing the degree of an algebraic
extension to

REMARK 3.3. Let f € K(x) be algebraic over K(g), B a transcendence basis of
K(x)/K(g). Then [K(g)(f) : K(g)] < [K(x) : K(g)(B)].

PROOF. As the minimal polynomials of f over K(g) and K(g)(B) coincide we have

[K(g)(f) : K(g)] = [K(g)(B)(f) : K(g)(B)] < [K(x) : K(g)(B)].0
A simpler way for calculating the required upper bound is given in
LEMMA 3.4. If f € K(x) is algebraic over K(g) then [K(g)(f) : K(g)] < [T~ deg(gs)-

PrOOF. Let B C {x} be a transcendence basis of K(x)/K(g), H a maximal (over K)
algebraically independent subset of {g}, B := BU H.

It is sufficient to prove
[K(x) : K(B)] < [] dee(a),
geB

because using Remark 3.3 we then have

—

K(g)(f) : K(g)] < [K(x) : K(g)(B)] < K(x) : K(B)] < [] des(9) < ] des(s)-

geB i=1
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Using a new transcendental element xg we can define the K-isomorphism

¢:K(x)—>K(ﬂ,...,x—">,xi»—>ﬁ.
To To To

Obviously ¢(B) is algebraically independent over K, so by means of the estimation from
Lemma 3.10 (b) in Kemper (1994) we obtain

[K(z1/w0, .. ., @n/x0) : K({p(g) : g € B})] < H deg((g))-

As deg(g) = deg(p(g)) for g € B we have [K(x) : K(B)] < [I,e5deg(g).0
We can now solve

PROBLEM 5. (“recognizing algebraic elements”):
Given K(g) < K(x) and f € K(x) decide whether f is algebraic or transcendental over

K(g).

As the modifications of Algorithm 3.2 are straightforward we forego stating an explicit
algorithm for solving Problem 5. We have

THEOREM 3.5. The problem of recognizing algebraic elements can be solved effectively by
combining Algorithm 8.2 with Lemma 3.4.

PrOOF. The claim is an immediate consequence of the above results.O
3.2. FINDING SPECIAL ELEMENTS

The technique used for computing minimal polynomials yields an obvious algorithm
for finding arbitrary polynomials of degree < [ € N>q in K(g); we simply have to look
at the normal form of 3>, .\, ; 4y - (Z¥ — 2#) modulo G which yields a system of linear
equations over K. By specializing some of the A, in advance we can force a “particular
structure” of the polynomial.

Finding polynomials is of interest if K(g) is known to have a polynomial generating
set, for instance:

LEMMA 3.6. Let g € K[x],K(g)(r1,...,7ry) be an intermediate field of K(g) and K(x)
with K(g)(r)/K(g) algebraic.
Then there are hq, ..., hy € K[x] : K(g)(r) = K(g)(h).

PrOOF. Using induction we can assume v = 1. Let 1 = %,ged(n,d) = 1,m € K(g)[Z]

the minimal polynomial of r; ' = % over K(g), and select py, ..., 1, ¢ € K[Z] such that
m(Z) = (22:0 pi(g) - Z%)/q(g). Clearing denominators in the equation m(%) =0 and
subtracting po(g) - n' on both sides we obtain —po(g) -n' = d- 22:1 pi(g) - dInl7¢ e
d is a divisor of py(g). As clearly po(g) # 0 the claim is a consequence of the equality

K(g)(2) = K(g)(n - 228)).0

Finding polynomials can be regarded as a special variant of the more general
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PROBLEM 6. (“special elements”):

Given parameters A, ..., Ay, f(A,x) € K(A,x), and K(g) < K(x) where K is alge-
braically closed decide if there is a specialization (A) — (o, ..., ) with o € K such
that f(a,x) € K(g).

An algorithm for solving this problem which also computes possible values a of A can
be used to look for elements of minimal positive degree in K(g), for example, by checking
successively whether there are elements of degree 1,2,... in K(g).

Keeping the above notation an answer to Problem 6 can be sketched as follows:

STEP 1: Compute the normal form N(f) := %A’;’g) of ny(A,Z) — f(A,x)-df(A,Z)
modulo G; let I, resp. Iy denote the ideal corresponding to the (polynomial) equa-
tion system we obtain when equating the coetficients in ny (A, x,Z) € K[A][x, Z]
resp. df(A,x) € K[A][x] to zero.

STEP 2: Check if V(I,) € V(Ig), i.e. V(In)\ V(I4) = 0.

For performing the second step effectively we can check whether /I, O I; by means
of a radical membership test as described in Becker and Weispfenning (1993, p. 268), for
example. If I; ¢ /I, the possible values « of A are given by V(I,,) \ V(I3), of course.
As the implementation of the individual steps is straightforward we skip the details and
state

THEOREM 3.7. The problem of special elements can be solved effectively.
PrOOF. The claim is an immediate consequence of Remark 1.4 and the above.O

Note that for satisfying a particular structure it can be necessary to use a non-reduced
3

representation of an element, as a trivial example think of m and C(z1?) where

A — 1 is the only specialization possible.

3.3. EXAMPLE: THE INVOLUTION FORM OF R(z1%2, %1 + 2)

To give a simple concrete example for the practical calculation of a minimal polynomial
we can compute the involution form (cf. Section 1.1) of R(zyx2, 21 +2), i.e. the minimal
polynomial of uix; + usxa over R(uy, u2)(#122, 21 + x2). The ideal to consider is

(Z1Z9 — x1%2, Z1 + Za — (21 + x2)) IR(u1, usg, 1, 2)[ 21, Za].
Using the lexicographic term order with Z; > Z5 we obtain the reduced Grébner basis
G :={Z1+ Zy — (x1 + 22), Zo* — (x1 + x3) - Zo + 2122}

Following Algorithm 3.2 we first have to compute the normal form of (u;-Z1+uq-Z2)+ Ag
modulo G with a formal parameter Ag. The normal form computes to

(ug —uq) - Zo + (1 + z2)uq + Ag

and does not vanish for any specialization 49 — g, g € R(z1, T2, 11, us). Therefore
the normal form of (uy - Z1 + ug - 22)2 + Ay - (u1-Z1 +ua- Za) + Ag modulo G has to be
computed with A; denoting a formal parameter:

((ug—un) Ar+ (1 +22) (u2? —u1 2)) Zo (1 +a2 )ur Ay + Ao —a122 (w1 — u)*+ (a1 + x2) s
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A simple calculation shows that the latter vanishes under the specialization
(Ao, A1) = (@122(ur —u2)” + (21 + @2) uruz, — (@1 + 2) (u1 + u2)),
i.e. the required minimal polynomial is

72 — (21 4 @2) (w1 + ua) - Z + 1z (ur — u2)” + (€1 + x2) w1 ua.

4. Intermediate Fields

4.1. INTERMEDIATE FIELDS AND PRIMARY DECOMPOSITION

One motivation for looking at subfields of K(x) is multivariate rational decomposi-
tion: When decomposing univariate rational functions subfields of K(z) are of interest
(cf. Zippel (1991)); so it seems natural to look at subfields of K(x) when trying to gen-
eralize these techniques. Given a minimal primary decomposition of J - K(x)[Z], i.e. the
ideal generated in K(x)[Z] by the elements of J (= J-K(g)[Z]), we can derive information
about the intermediate fields of K(g) and K(x). In order to be able to make this more
precise we remind the reader of

LEMMA 4.1. Let L/K denote a (not necessarily algebraic) separable extension of fields,
I<K[Z4,...,Zy) a radical ideal. Then the following statements hold:

(i) I-1L[Z] is radical.
(ii) If K is algebraically closed in L and I is prime then I -1L[Z] is prime.

ProoF. (i) A consequence of (Eisenbud, 1995, Exercise Al.1)
(if) A consequence of (Eisenbud, 1995, Exercise A1.2 a)O

By means of this lemma we can derive

LEMMA 4.2. Let

(1) J=J -K(g)|Z], K(g) as in Lemma 1.2,

(2) J-K(x)[Z] = ﬂizl Q; o minimal primary decomposition,
(3) P; the associated prime of Q;, i=1,...,1,

(4) L an intermediate field of K(g) and K(x),

(5) K(8)ag the algebraic closure of K(g) in K(x).

Then for K(x)/K(g) algebraic the following statements hold:

(i) If K(x)/L is separable then there is A C {1,...,1}: After removing the elements
of K the coefficients of a reduced Grébner basis of (\y\cp Px form the canonical
generating set of I as computed by Algorithm 1.8.

(i) If L/K(g) is separable then there is A C {1,...,1}: After removing the elements
of K the coefficients of a reduced Grébner basis of (1ycp @x form the canonical
generating set of I as computed by Algorithm 1.8.

(i) Up to permutation Q1,...,Qq are uniquely determined.

(i) If K(x)/K(g) is separable Vi=1,...,1: Q; = F;.
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For K(x)/K(g)ag separable (not necessarily algebraic) there is a A € {1,...,1}: After
removing the elements of K the coefficients of a reduced Grébner basis of Py form the
canonical generating set of K(g)aig as computed by Algorithm 1.8.

PROOF. We first prove the statements for the algebraic case; hence until stated otherwise
K(x)/K(g) is assumed to be algebraic. We can split the extension K(x)/K(g) into the
steps K(g) C K(g)e, S K(x) where K(g),,/K(g) is separable and K(x)/K(g)
purely inseparable.

Now assume L/K(g) to be separable. From Lemma 4.1 (i) we conclude that .J - L[Z] is
radical and of dimension zero. In particular, its primary components are the prime ideals
it is contained in. Note that if K(x)/K(g) is separable we obtain (iv) by applying the
latter argumentation to K(x)/K(g).

Let Ji, = Ji- L[Z] denote the prime ideal corresponding to L. according to Lemma 1.2.
In particular, Ji, is prime. Moreover, we clearly have J-L[Z] C Ji,-L[Z], i.e. Ji.-L[Z] is a
primary component/an associated prime of J-L[Z], and we have a primary decomposition
of the form

sep sep 18

l/
J-L{Z) = Ji.-LIZ) N () Pug
=1

where P, 1,..., Py <L[Z] are prime.

As above we recognize Ji. - K(g)gep[Z], PL,1 - K(8)geplZ), - - - s Pr i - K(g)gep Z] as radical.
As all of these ideals are of dimension zero their associated primes cannot properly contain
each other, and we have a primary decomposition of the form

1 v
‘] : K(g)sep [Z] = ﬂ PK(g)sepri ﬁ ﬂ PK(g)SeI)’i
i=1 i=1"+1

1

sep (Z) = ﬂi:l PK(g)sep,i'

Now let i € {1,...,0"}, Q; := Pi(g)gepi» P4 € K(x)[Z] such that p- g € Q. - K(x)[Z).
From K(x)/K(g)sep y =
p%,q% € K(g)sep[Z] and p®q® € @, i.e. p° or ¢° must be contained in @;. Therefore p®

with PK(g)sep71’ .. 7PK(g)sep,l”/ﬂK(g)sep [Z] prime and Ji, - K(g)
being purely inseparable we know that there is e € Ny g such that

or ¢¢ is an element of Q; - K(x)[Z], and Q; - K(x)[Z] is primary. Moreover, for i # j we
have

VO K2 Z /@ Kx)(2),
otherwise we had Q; C Qj, because Q; C \/51 and Q; - K(x)[Z] C \/Qj -K(x)[Z]

can be verified by means of the same computation (cf. Becker and Weispfenning (1993,
p. 268)). Hence
l/// ~
J-K()[Z] = [(Q: - K(x)[Z])
i=1
is a minimal primary decomposition. As J - K(x)[Z] is of dimension zero its primary
components are unige up to permutation, this implies (iii).
From Ji, - K(x)[Z] = ﬂizl Qi we can conclude (ii), as the reduced Grébner bases of Ji,
and Jy, - K(x)[Z] coincide.
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Now let K(g)/LL be separable. As above we recognize Ji, - K(x)[Z] as zero-dimensional

and radical. In particular, its primary components are maximal ideals containing the
zero-dimensional ideal J - K(x)[Z]. Therefore they must be contained in {Fi,..., P},
and we have proved (i).
Now assume K(x)/K(g) to be separable (not necessarily algebraic); let Ju,<K(g),,[Z]
be the ideal corresponding to the algebraic closure K(g),), of K(g) in K(x). Clearly, we
have the inclusion J - K(g),,[Z] C Jaig; as the dimensions of the latter ideals are equal
(Lemma 2.1) Jaig is minimal among primes containing J - K(g),,[Z] and therefore an
associated prime hereof. From K(x)/K(g),), being separable and K(g)ay algebraically
closed in K(x) we can deduce that for a prime ideal P<K(g),,[Z] also P - K(x)[Z] is
prime (Lemma 4.1 (ii)). As dim(J-K(x)[Z]) = dim(Ja1¢-K(x)[Z]) we identify in particular
Jalg - K(x)[Z] as an associated prime of J - K(x)[Z].O

Note that for the special case K(x)/K(g) algebraic, L. the separable closure of K(g) in
K(x) the situation is extraordinarily simple:

REMARK 4.3. Let K(g), Q1,...,Q; be as in Lemma 4.2, K(x)/K(g) algebraic, K(g)
the separable closure of K(g) in K(x).

Then there is a A € {1,...,1}: After removing the elements of K the coefficients of a
reduced Grébner basis of @ form the canonical generating set of K(g),. ., as computed

by Algorithm 1.8.

sep
sep

ProOOF. The claim follows trivially when inspecting the proof of Lemma 4.2 for the case
L = K(g)sep- O

sep”

While Lemma 4.2 in principle can be used for computing all intermediate fields of a
separable algebraic extension K(x)/K(g), for the problem of computing a primary de-
composition see, e.g. Becker and Weispfenning (1993, Section 8), Eisenbud et al. (1992),
or Gianni et al. (1988), for practical purposes probabilistic approaches like guessing a
primitive element of the extension K(x)/K(g) and factoring the minimal polynomial
hereof, may be preferable (for the problem of computing intermediate fields of a finite
algebraic extension cf. also Lazard and Valibouze (1993), for instance).

4.2. (COUNTER-)EXAMPLE: PURELY INSEPARABLE EXTENSIONS

The importance of separability for the characterization of intermediate fields as given
in Lemma 4.2 can be illustrated by a simple example: for the purely inseparable extension
Fa(z)/Fa(z*) the corresponding primary decomposition is given by

(Z* — 2ty =(Z - 2)*,

i.e. the intermediate field F2(z?) can neither be described as an intersection of associated
primes ((Z —x)) nor as an intersecton of primary components ((Z*—x%)). Another exam-
ple is given by the extension Fy(z,y)/Fy(«¥, y?): as there are infinitely many intermediate
fields Lemma 4.2 obviously cannot be used to characterize all of them.
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5. Some Practical Considerations

For practical purposes the most critical part in the algorithms proposed is the com-
putation of a Grobner basis of the ideal J. As usually a term order of “block type” (cf.
Algorithms 1.8, 1.17) has to be used here it is recommendable to use basis conversion
techniques as discussed in Collart et al. (1993) or Faugere et al. (1993) for speeding up
computations by computing a Grébner basis w.r.t. an “easy” (e.g. a graded reverse lex-
icographical) order first. Moreover, it can prove useful to avoid unnecessary reductions
during Buchberger’s algorithm, as reducing polynomials can be rather expensive when
dealing with coefficients in K(x), note that, e.g. for determining field membership the
use of a reduced Grobner basis is not mandatory. Indicating this problem to Allan Steel
resulted in the implementation of the function GroebnerBasisUnreduced for computing
unreduced Grobner bases in the computer algebra system MAGMA. To illustrate its use we
give an example from invariant theory, computations were done with MAGMA V2.20-2
on a Sun Ultra-1 with 143 MHz: Let (33 be a primitive 23rd root of unity,

<( %3 —223 )’( —01 <(213 >> < GL(2,Q(¢23))

the subgroup of GL(2,Q(¢23)) generated by( %3 _223 ) and ( _01 %3 ) It consists

of 184 elements, and its field of invariants over Q((23) is generated by

{2196 + 2220, 1M m0? + (o3 a1 20, 11 a0t 4 Co3M0m1 220 ®2, 2120200 + (o3 a1 000,
.’17138.’1728 + <2315$18$238, .’17136.’17210 4 <2313$110$236,$134$212 4 <2311$112x2347
.’17132.’17214 + <239.’17114.’17232,.’17130.’17216 4 <237$116$230,$128$218 4 <235:1:118:172287
.'17126.'17220 + <233$120$226,$124$222 + <23$122$224’ .'17192 + $292}'

Computing a reduced Grébner basis over Q((23) (1, z2) of the corresponding ideal w. r. t.
the graded reverse lexicographic order with Z; > Zs using the standard GroebnerBasis
function in MAGMA V2.20-2 takes about 12 min. Using GroebnerBasisUnreduced in-
stead, thereby trying to avoid unnecessary reductions, after about 1 min results in a
(in this particular case already reduced) Grébner basis consisting of three polynomi-
als; each of these polynomials contains three terms. Computation of a reduced Grébner
basis by means of tag variables 77, ...,1T13, using a graded reverse lexicographic order
on both the Ty,...,713 and the z{,xs block, after about 15 min results in a set of
146 polynomials (as expected when dealing with coefficients in Q((23) only the use of
GroebnerBasisUnreduced does not speed up the computation here).

Note that the latter example also meets the expectation that in case of being given
a generating set of a field K(g) with cardinality greater than the transcendence degree
of K(g)/K doing without tag variables is promising; to give another example of this
behaviour we specify a subfield Q(g;(x), ..., g5(x)) of Q(z1,z2) by giving five generators:
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Here finding a reduced Grobner basis of
(n1(Z) — g1(x)d1(Z),n2(Z) — g2(x)d2(Z), 93(Z) — g3(x), 94(Z) — g4(x), g5(Z) — g5(x)) :
(21 = Zo = 1) - (Z1 — 217 Z5°))*° 2Q(z1, 22)[ 21, Zo]

w.r.t. the graded reverse lexicographical term order with Z; > Z5 takes less than 1 s
and identifies Q(¢1(x),.. ., g5(x)) as being equal to Q(x1,z2) while the computation of
a reduced Grobner basis using tag variables takes about 24 min.

We remark that no examples using tag parameters (cf. Section 1.2.1) have been given,
as there is no implementation of this method available at the moment, and comparing

a prototypic implementation of this technique with the rather elaborate algorithms in
existing computer algebra systems did not seem to be sensible, either.
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