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ABSTRACT

We describe a new arithmetic model for real algebraic num-
bers with an exact equality determination. The model rep-
resents a real algebraic number as a pair of an arbitrary pre-
cision numerical value and a symbolic expression. For the
numerical part we currently (another representation could
be used) use the dyadic exact real number and for the sym-
bolic part we use a square-free polynomial for the real al-
gebraic number. In this model we show that we can decide
exactly the equality of real algebraic numbers.

1. INTRODUCTION

We can now calculate not only real algebraic numbers but
also some transcendental numbers (more precisely real num-
bers that are computable)' exactly up to any precision as we
want. This means that we can generate, for example, deci-
mal digits of a real number to as much precision as we want
and we are guaranteed that this representation is accurate
to given precision. This contrasts with the situation in most
Computer Algebra (CA) systems, where bigfloats evaluate
to a pre-determined precision. Attempts to produce lazy
bigfloats in the style of the successful lazy power series have
not worked well [2]. The two notable models for exact real
arithmetic are : the B-adic exact real arithmetic (we choose
B = 2 hence dyadic) [10] and the linear fractional transfor-
mation arithmetic [12]. But these two models suffer from
one fundamental problem, namely these models can not tell
when a real number is exactly zero [13] or equivalently they
cannot tell whether two real numbers are exactly equal or
not.

*The first author was partially supported during the writ-
ing of this paper by the OpenMath project (Esprit project
24969).

'"We denote the set of real numbers by R, the set of com-
putable real numbers by Rc and the set of real algebraic
numbers by Ra. Note that R4 C Rg CR.
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Traditionally the zero identification (or recognition) problem
has been investigated mainly by computer algebra commu-
nity and mostly by Richardson [11]. Although Richardson’s
method can also be applied to transcendental numbers it
uses a combination of difficult mathematics such as the LLL
algorithm [7] and Wu’s method for generating characteristic
sets and we do not know, for example, its complexity. These
motivated us to ask whether we can solve the equality prob-
lem (hence zero problem) for the smaller set of real algebraic
numbers. A real algebraic number, say the positive® square
root of 2 (1/2), has two kinds of information associated with
it : a numerical value of 1.4142 ... when expanded into dec-
imal and a symbolic expression ¢> — 2 since it is a root of
this polynomial. Hence we solve the equality problem for
Ra by representing an o € R4 as a pair of its numerical
value and the minimal polynomial (or possibly a multiple of
it) corresponding to it. But the main difference from other
models for algebraic number arithmetic such as [8] and [14] is
that we use exact real arithmetic whereas others mostly use
floating point interval arithmetics. So we use a dyadic real
number (we will write z € RE® to say that z is a dyadic
real number) for the numerical part and a square-free (or
possibly the minimal polynomial) with integer cofficients as
the symbolic part. For example, v/2 is represented in our
model as

[fz(n),2” - 2]

where the numerical part, f 5(n) is the positive square root
of 2 in the dyadic real arithmetic (that is given n, f z(n)

returns n bits of exact approximation to v/2, see next sec-
tion), and the symbolic part, > — 2, is a defining, possibly
minimal, polynomial which has the numerical part as one of
its real roots.

The motivation for representing a real number as such a pair
comes from an observation that we can use the real root
separation bound (calculated dyadically), i.e. the minimum
distance between any two distinct real roots of a polynomial
p(z) € Z[z], as a termination condition for the possibly infi-
nite dyadic equality. For the real root separation bound we
use Mahler’s [3] separation bound for any two real roots of
a given polynomial.

’In this paper, /_ always means the positive square root.



To avoid confusion between the dyadic equality (inequality)
and pair equality (inequality) we write & =¢,) ¥ (& <(»)
y) to say that = and y are dyadically equal (inequal)® and
we will use the symbol =, (z <, y) for our pair equality
(inequality) and reserve the standard equality symbol = (<)
for mathematical equality (inequality) as in v/2 x v/3 = /6.
We will also use the symbol := for definition to avoid the
confusion between definition and equation.

This paper is organised as follows. In section 2, we briefly
describe the dyadic real arithmetic. The reader should note
that the choice of dyadic real arithmetic is not fundamental
to the argument of this paper: any arbitrary-precision real
arithmetic (e.g. [12]) would do. In section 3 we define our
pair model for R4 and the usual elementary operations: ad-
dition, subtraction, multiplication, and division. In section 4
we derive the key Equality Theorem using Mahler’s real root
separation bound. We use the theorem to show the equal-
ity of two examples. In section 5 we derive the Inequality
Theorem using the Equality Theorem and show an example
of inequality. We conclude by pointing out further points to
study and discuss implementation and applications.

2. DYADIC EXACT REAL ARITHMETIC

The dyadic exact real arithmetic is an exact real arithmetic
based on the concept of computable real numbers and their
finite representations. Since the real numbers are uncount-
able it is obvious that there are only a limited number of
real numbers that are finitely representable. These finitely
representable real numbers are often called recursive or com-
putable real numbers (R¢). The dyadic real arithmetic rep-
resents a number z € Ro by a recursive function f : N —+ Z
such that

|fe(n) — 27| < 1.

Having characterised the set of computable real numbers
one can define all the usual operations on them including
many transcendental functions [10, 5]. For example, ad-
dition can be defined as below which satisfies the bound
condition above®*:

font = [ E0FD 02

But as we said in the introduction one can not have exact
equality and inequality due to the fundamental fact that
0 is not decidable (equivalently equality is undecidable) in
this arithmetic (the alternative, linear fractional transfor-
mational approach, is no different here). So one has to be
content with the dyadic equality (and inequality) instead of
exact equality (and inequality). But in this paper we show
that we can use the dyadic equality (and inequality) for our
exact equality (and inequality) determination for Ry4.

3. R4 AS PAIRS

We represent an x € Ra by a pair of its dyadic real f,(n) €
RET and corresponding polynomial p(z) € Z[z]. Thus in
our pair model :

3gee section 4 for definitions of dyadic (in)equality.

“Note that we use an integer division which rounds to the
nearest integer so that the error is at most 1/2.
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Definition 3.1 (Pair : Squarefree Version) A real al-
gebraic number in RE*" is a pair [f,(n), p(x)] where f,(n) €
RE® is a dyadic representation of z and p(z) is a square-free
polynomial € Z[z] such that p(z) = 0.

We choose to insist on square-freeness since it is cheap to
calculate and necessary to make the discriminant nonzero
in the bound used in Theorem 4.5. If we insist that our
polynomial be minimal we can define a minimal algebraic
number. A minimal polynomial is irreducible by definition.

Definition 3.2 (Pair : Minimal Version) A minimal
real algebraic number is a pair [fz(n), p(z)] where fo(n) €
RE® is a dyadic representation of x and p(z) is the minimal
polynomial € Z[z] such that p(z) = 0.

We will write Z to denote the pair representation of z €
R4a. For example, an integer k € R4 is represented by k =
[fx(n),x — k] where f,(n) is a dyadic representation of k (in
fact fi(n) := 2"k) and z—k is the polynomial corresponding
to k.

3.1 Elementary Operations

The elementary operations on pairs follow straightforwardly®
from the arithmetic of dyadic numbers and the algebra of
defining polynomials.

If 2 = [fe(n),p(z)] and § =, [gy(n), ¢(y)] are two real
numbers in our model, then the pair operations (denoted

by @©,0,® and @) are defined as below. Note that +, =, X
and 7 denote the operations of dyadic real arithmetic and
res denotes resultant [3]. The resultant calculations do not
necessarily give minimal or even square-free polynomials so
we need a refinement operation which we denoted as R.

Definition 3.3 (9,9, ®,0)

TDYy = [fw(")q'gy(")a

R(res(res(z — (z + y), p(2), x), ¢(y), ¥))],
TOoy = [fw(")Lgy(")a

R(res(res(z — (z — y), p(2), %), ¢(y), ¥))],
TRy = [fw(")ng(")a

R(res(res(z — (z x y), p(2), ), ¢(y), ¥))],
zog = [f(n)/gs(n),

R(res(res((y x z) — ), p(2),2),q(y), v))]-

The resultant calculation in the symbolic part returns a
polynomial which has the corresponding numerical part as
one of its roots. Note that we will have to take care of the
cases where the resulting polynomials are not square-free. In
these cases we square-free-decompose them into products of
square-free polynomials. In principle, we can deal with these
polynomials by considering their product, i.e. the square-
free part of the original, but we decided to simplify the re-
sulting polynomials by choosing the one which contains the

®But this does not necessarily mean that it is easy to code
them. We implemented our model in Axiom. Axiom is a
trademark of NAG Ltd..



numerical part as a root from among the square-free fac-
tors. All these matters are taken care of by the refinement
operation (Lemma 4.6). Note that the resultant calculation
and square-free factorisation are standard parts of almost
all algebraic number packages [8]. An interesting contrast
between our pair representation and those (minimal poly-
nomial, interval) pair representations is: other arithmetics
[8, 14] have to specify which root of the polynomial that it
means whereas we have to choose which polynomial contains
the root that is given as the numerical part. This is due to
the fact that our model includes the exact numerical infor-
mation while others include the root-location information
in terms of intervals. In choosing the right polynomial we
will fully use the numerical information provided by dyadic
exact real arithmetic as described below in detail.

Below is a simple example of 2 ¢ 3 in Axiom. Note that
2 =[f2(n),z—2] and 3 = [f3(n),y—3]. In Axiom’s language,
2::PAIR and 3::PAIR gives 2 and 3 respectively. Note that
we only show five decimal digits of the numerical value for
convenience. The ? is the Axiom’s symbol for a variable®.

(1) -> a := 2::PAIR

1) ["+2.00000",7 - 2] Type: PAIR
(2) -> b := 3::PAIR

(2) ["+3.00000",7 - 3] Type: PAIR
(3) >a+hb

(3) ["+5.00000",7 - 5] Type: PAIR

For other representations of algebraic numbers see those ref-
erences cited above and [9]. These representations seem to
differ only in the way how they locate the roots of the poly-
nomials and all seem to rely on the calculation of Sturm
sequences to count the number of sign variations.

4. AN EXACT EQUALITY FOR R4

As we remarked earlier we write x =, y to say that x and
y are dyadically equal up to n digits when x(m) = y(m) for
all m < n and x <, y to say that = is dyadically smaller
than y, or more precisely, if we can find an n such that
y(n) > z(n) + 2. Note that the +2 is needed, since we have
a tolerance of +1 on each of x and y.

Let f z(n) be a dyadic square root function such that

Ffan) —2"VE| <1

for positive integer k. Translated into a pair representation,

V2 x v/3 = v/6 becomes
[fz(n),2” =21 @ [f 3(n),2° = 3] =, [f 5(n), 2" — 6]

and we are claiming that the pair equality is the same as
the mathematical equality.

We now derive the Equality Theorem of two real algebraic
numbers as represented as pairs. For this we need the follow-
ing theorem of Mahler [3]. Throughout this section p(z) =

5In Definition 3.3, «’s polynomial was in terms of x, y’s in
terms of y, and the answer’s in terms of z. In the implemen-
tation, we use Axiom’s anonymous “SparseUnivariatePoly-
nomial” type.
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anx" +an_12" "1+ -4+ ao where the a; are integers and a,
is non-zero. n is therefore the degree of p. The separation
of p, sep (p) is defined as the smallest distance between any
two roots of p. Let the roots of p be a,... , .

Definition 4.1 (sep (p))

min

1<i<j<n o — -

sep (p) 1=

Note that sep(p) # 0 if, and only if, p is square-free.

We also need the concept of the discriminant of a polyno-
mial.

Definition 4.2 (disc (p)) The discriminant of a polyno-
mial p, disc (p), with leading coefficient a,, and roots aq,.. . ,

ay, is defined as
I[I (@-a)

disc (p) In=2
1<i<j<n

= a,

If a; are all integers then the discriminant is also an integer,
nonzero if, and only if, the polynomial is square-free. Mahler
gave a bound for the separation [3].

Theorem 4.3 (Mahler)
sep (p) > /3 disc (p)] n™ "2 ||ply7"

where

Ilplle :

Theorem 4.3 gives us a lower bound for the minimum dis-
tance between any two distinct real roots. We will call it
Mabhler’s bound or in short Mbound.

Definition 4.4 (Mbound (p))
Mbound () = /3 [disc (p)] n~ "/ ||p||4 "

Using the Mahler’s bound we can derive our key theorem.

Theorem 4.5 (Equality Theorem) Let

T =p [fo(n),p(z)] and § =p [95(n), ¢(y)]-

Then

E=p7 iff |fuln) = 9y (M)|(n) <(n) Mbound r(z)
where r(z) s the symbolic part of T & .
ProoF. If we negate Mahler’'s Theorem then, for any two
real algebraic numbers = [f (n), p(z)] and § = [g4(n), ¢(y)],
if the (dyadic) distance between the two numerical parts,
|fe(n) = gy(n)|(n), is (dyadically) less than Mbound of the
minimal polynomial corresponding to £ © ¢, then x and y
are the same. [

Note that the refinement operation is very important in the
sense that it guarantees that r(z) is a square-free polyno-
mial, i.e. discr(z) # 0. In the rest of this section we show
two examples.



4.1 Examplel: V2 x /3 =16

We apply the Equality Theorem to show v/2 x v/3 = v/6. In
other words we have to show whether

[f5(n),a® = 2] @ [f 5(n),2° = 3] = [f5(n), 2" - 6].
or not. Expanding the left-hand side we get
[fz(n),a” =2 @ [f 5(n), " - 3]
=p [fyzx fyz(n), R(res(res(z — (z x y), p(x),2),4(¥),¥))]
=p [f 5% f/5(n), R(a* — 122° + 36)]
=, [fzxfz(n),2° — 6.

In Axiom,
(1) -> x := sqrt(2::PAIR) * sqrt(3::PAIR)
2
(1) ["+2.44949",7 - 6] Type: PAIR
(2) -> y := sqrt(6::PAIR)
2
(2)  ["+2.44949",7 - 6] Type: PAIR

Notice the refinement operation R above performed a square-
free decomposition and lowered multiplicity two into one to
make the discriminant non-zero. So our problem is now
changed to

[f % fyz(n),e” = 6] =5 [f 5(n), 2" 6]

At this stage we might want to say that they are equal as
pairs (hence mathematically equal). But unfortunately we
can not insist that they are equal as pairs yet for two reasons:
the equality of the symbolic parts is not sufficient for the
equality of numerical parts (for example, /2 X /3 # —v/6)
and the numerical parts are not mathematically equal but
dyadically equal. So we apply the Equality Theorem. Ap-
plying © we have

[fzxfyz(n), a° = 6]O[f 5(n), 2° — 6]
=, [f 5% fz=F5(n), z°(z” — 24)].

In Axiom (using a version without the refinement opera-
tion),

3) > zxvy
2

3) ["+o",?2(? - 24)] Type: PAIR

The polynomial x(z> — 24) has three real roots 0, 2/6 and
—2v/6. Now by the Equality Theorem if

| fo(n)| <(ny Mbound (z*(z” — 24))
then they are equal. Since (for n > 5)
fo(n) <(ny Mbound (z° — 24) =5 0.17662

we have shown that they are indeed equal.

172

4.2 Example2: \/9+4/2=1+22

This example is taken from [4]. The equality corresponds to
the pair equality

lf /_9+4ﬁ(n),z4 —18x% 4 49] =, [1‘1_4_2\/5(71)@2 -2z —17).

In Axiom,
(1) -> x := sqrt(9+4*sqrt(2::PAIR))

¢)) ["+3.82843",?4 - 18?2 + 49] Type: PAIR
A factorising refinement would give
(2) -> x := sqrt(9+4*sqrt(2::PAIR))

(2) |:"+3.82843",('?2 -27 -7) (?2 + 27 - 7)]

Type: PAIR

and
(3) -> y := 1+2%sqrt(2::PAIR)

3 ["+3.82843",?2 - 27 - 7] Type: PAIR

We now have an interesting problem : which one, #? —2x—7

or ©2 + 2z — 7, has V94 4v/2 as one of its roots? This
question is not so straightforward to answer. Qur answer is
to use the dyadic inequality as described below. First we

evaluate the two factors at @ = /9 +4v/2. Only one of
these two evaluations must return zero since one of them
must have the given number as a root and all the roots are
distinct. Now we only have to check which evaluation
becomes zero. But this looks like we ended up at the same
problem we first set out to solve. But fortunately we have
the following lemma. This lemma will allow us to choose
the right one among the factors. In this example we have
only two factors but the general case is no harder. We will
write defpoly (x) for the square-free defining polynomial for
x.

Lemma 4.6 (Refinement Lemma) Let p(x)q(x) be a fac-
tored square-free polynomial (i.e., p,q are square-free and
their ged is 1) corresponding to a real algebraic number z.
Then

defpoly (x) = { if [P(2)|(n) <(ny [4(@)](n)

if 14(@)|(n) <(ny [P(2)](n)

p(z)
q(z)

ProOOF. We know that only one of them is (exactly) zero
hence it must be dyadically zero and it is the smaller one
(or smallest if there are more than two candidates) and thus
it must be the dyadically smaller one. [

To apply the lemma, we check

(.732 -2 — 7)¢U=(n)f (n)
VorvE i)
2
<(n) (.7: +2z - 7)””=(n)f1+2\/5(n) (n)




The actual dyadic values are 0 for % — 22 — 7 and 15.31371
for the other. So z* — 2z — 7 is the defining polynomial for

V9 + 41/2. Having settled the choice problem we now have

[f\/9+4ﬁ(n),z2 —22-T = [f1+2ﬁ(n),z2 — 2z — 7]

From now on it is exactly the same routine as the first
example. So taking © we get

[f oz~ Fryava(n), ala® = 32)]

and since the numerical value of f N aww A ) is less

94421422 (n
than

Mbound(z(z” — 32)) =5 0.03925,

they are indeed equal.

5. AN EXACT INEQUALITY FOR R4

In this section we study inequality. The problem is solved
step by step. We use the symbol <, for pair inequality.
First note that we can assert that Z <, § = [f=(n),p(z)] <p
[9v (n), ¢(y)] (pair inequality) if fo(n) <n gy(n). But unfor-
tunately we have no guarantee for the termination of the
dyadic inequality. Indeed they will run forever if they hap-
pen to be equal. Thus what we need is a termination condi-
tion which will guarantee the pair inequality without resort-
ing to dyadic inequality infinitely”. We use the pair equality
to derive such a termination condition as below. First, we
check whether & =, § or not using the pair equality. If yes
then obviously & £, y. If no, then we can safely resort to
dyadic inequality since we are certain that they will return
either yes or no eventually although this might take arbi-
trarily long time. Hence we have the following theorem.

Theorem 5.1 (Inequality Theorem) Let
T =p [fo(n),p(@)] and § =, [94(n), q(y)]-

Then
T<py Hf TH#py and fu(n) <n gy(n),
>,y iff T#,7 and gy(n) <n fu(n),
<y ff T=pYor® <,
T>p Y Hff T=pyorZT>py.

"Notice that we used an (dyadic) inequality lemma, in show-
ing equality. For showing ¢nequality we have to use equality
information.
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6. CONCLUSION AND FURTHER STUDY

In this paper we have shown that we can decide the equal-
ity and inequality for R4. But in general, Rice [13] showed
that zero is undecidable. Due to this result we can not,
for example, determine the integer part of a real number
which, in turn, implies the undecidability of the rational-
ity /irrationality of a real number. But now with our algo-
rithm we can at least test equality for any two real algebraic
numbers. Equivalently we can determine whether a real al-
gebraic number is zero or not. So one can regard this as a
partial but practical solution for the undecidability of zero
problem.

The key result in this process is Theorem 4.5, which relies on
the bound in Lemma 4.3. If such a bound could be found for
a wider class of expressions, this approach would generalise.

We regret that we couldn’t perform a complexity analysis
of our algorithms. As far as we know the B-adic exact real
arithmetic itself lacks any kind of complexity information
(the same situation holds for the linear fractional transfor-
mation approach).

The next step for the zero recognition problem is to con-
sider the possibility of zero recognition for a larger class
of numbers which includes some transcendental numbers.
Currently Richardson’s method seems the best at the mo-
ment. One important result related with this is the model-
completeness proof for the first order theory (R, exp) [15].

Another area related to our work is in denesting nested rad-
icals [6]. It will be interesting if we can incorporate these
simplifications into our algorithm so that we can simplify
nested radicals first before testing equality.

Several experiments need to be performed to tune this im-
plementation. For example, it would be possible to replace
the numeric part of /2 + v/3, whose minimal polynomial is
#* —102° + 1, by a numerical algorithm directly approxi-
mating this root (we do know a starting value, generally the
major problem in numerical root-finding). Is this worth it?

We have only discussed real arithmetic. Since C4 = Ra X
R4, we have a representation of Ca as RE¥" x RE¥™. But
is this the most efficient one? Maybe we should have a
triple (R(z) € REE, 3(x) € RER, p), where p is a polynomial
satisfied by x.
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