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Abstract
A useful technique for the study of local bifurcations is the center manifold theory because a dimen-
sional reduction is achieved. The computation of Taylor series approximations of center manifolds gives
rise to several difficulties regarding the operational complexity and the computational effort. Previous
works proceed in such a8 way that the computationsl effort is not optimized. In this paper an algorithm for
center manifolds well suited to symbolic computation is presented. The algorithm is organized according
to an iterative scheme making good use of the previous steps, thereby minimizing the number of opera-

tions. The results of two examples obtained through a REDUCE 3.2 implementation of the elgorithm sre
included.

1. Introduction

The qualitative analysis of dynamical systems —in particular, the characterization of
local bifurcetions- requires auxiliary tools to facilitate its fulfilment. The center manifold
theory is a useful technique because a dimensional reduction of the problem is achieved.
This paper deals with the practical computation of Taylor series approximations of center
manifolds.

Consider the system

&= Az + f(z,y)

1.1
¥ = By +g¢(z,y) (1)

where z € R™, y € R™, and A, B are constant matrices such that all the eigenvelues of A
have zero real parts while all the eigenvalues of B have negative real parts. The functions
f and ¢ are C" with £(0,0) = 0, Df(0,0) = 0, ¢(0,0) = 0, Dg(0,0) = 0. The origin
is obviously & nonhyperbolic equilibrium. In this situation there exists a local invariant
manifold: y = A(z) with h(0) = 0, DA(0} = 0 and h is C7; it is the so-named center
manifold. The flow on this manifold is governed by

2 = Az + f(z,h(z)) (1.2)
which constitutes the so-named reduced (n-dimensional) system. It contains all the neces-

sary information to determine the asymptotic behavior for the flow near the origin of the
(n + m)-dimensional system (1.1).
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As the center manifold is invariant for the flow, the following equation must be held
M(h(z)) = Dh(z){Az + f(z, h(2))} — Bh(z) — g(z,h(z)) =0 (1.3)

The center manifold can be approximated as a Taylor expansion series at z = 0,
in the following sense (Carr (2}): if a function ¢(z) with ¢(0) = 0,D¢(0) = 0, verifies
M(4(z)) = O(|z}') where I > 1, then h(z) = ¢(z) + O(lz])) as = — 0.

In practice we consider a polynomial approximation ¢ and its computation proceeds
as follows. Let V(k,n,m) denote the linear space of all m-vector functions v(z) of the
n-vector = which are homogeneous polynomials in = of degree k. Thus ¢ can be expressed
as

km-x
#(z) = Y vi(z) where va(z) € V(k,n,m) (1.4)
k=2
and kmay is the degree of accuracy. To compute vi(z) we assume that vi(z), 2<: < k,
have been obtained and we set ¢x(z) = 2:;2 vi(2).
If we define
L(h(z)) = Dh(z)Az — Bh(z)
N(k(z)) = g(z, h(z)) — Dh(x)f(z, k()
then (1.3) can be rewritten as L(h(z)) = N(h(z)). o
Note that L is & linear operator and L(V(k,n,m)) C V(k,n,m} for all k. So it is
required that

(1.5)

L(¢x(2)) = N($i(2)) + O(=**!) (16)
and as L(¢4(z)) = Liaz L(vi(2)) , then
Li(ve(z)) = na(z) (1.7)

where L, is L restricted to V(k,n,m) and n(x) represents the k-degree terms of Taylor
expansion of N(¢x(z)) -and so ni(x) is an element of V(k,n,m). The equation (1.7)
constitutes a linear system to be solved in V(k,n,m) whose dimension is m - (“':-’).

In the applications (1.1) can be a large system (the value of m + n is high); further,
one can consider linear degeneracies of codimension greater than one (high value of n).
In other cases, as in presence of symmetries, we deal with high-codimension nonlinear
degeneracies, forcing a growth in the order of necessary accuracy (high value of kpax). In
sum, the linear system (1.7) might be a very large system and so its computer algebra,
resolution should be effectively impossible unless a careful insight is provided.

In order to solve (1.7) we need a matrix representation of Ly and n; and this task
involves computational complexities. Notice that a direct substitution of ¢i(z) in the
Taylor expansion of N to obtain ni produces not only k-degree terms but lower and
higher ones which are not required and consequently the computational effort would not
be optimized.

Previous known works (4}, (5], [10]) essentially proceed in this way. Therefore it seems
interesting to design new approaches which overcome the limitations above mentioned.
In this paper an algorithm for center manifolds well suited to gymbolic computation is
presented. The algorithm is organized according to an iterative scheme making good
use of the previous steps, thereby minimizing the number of operations and the memory
requirements.
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2. Description of the algorithm

In the study of the behaviour near a degenerate equilibrium of a dynamical system
is of great interest to use certain coordinate changes by means of which it is possible to
“simplify” its differential equation, so obtaining the so-called normal forms. These forms
are simpler than initial system to the effect that nonlinear terms which are not essential
have been removed.

The coordinate transformations yielding normal forms can be usged for center manifolds
calculations (see Chow & Hale [3]). Let us make the following near-identity transformation

in (1.1): )
(:)= (g)’f(ﬁ(oz)) (2.1)

where # € R",§ € R™ and A(0) = 0, DR(0) = 0. The new differentinl equations ave:

& = Az + f(2,9)
2.2
= By +3(5,9) *2
where
fz.0) =f@.g+hz)
§(z,9) = — {Dh(2)Az — Bh(z)}+ (2.3)

We choose k() such that § = 0 were an invariant hyperplane for (2.2). This condition
is equivalent to §(&,0) = 0 and therefore, we deduce that i(Z) must verify the equation
(1.3) corresponding to center manifolds; from now, we identify & and h. Furthermore the
system

i = A% + f(7,0)
becomes the reduced system. So center manifold computation for (1.1) is equivalent to
calculate the transformation (2.1) leading to (2.2) with the above condition. From a
geometrical point of view the playing role of coordinate transformation is to flat the center
manifold.

In Meyer & Schmidt [8] and Chow & Hale {3], an approach to the transformation
theory leading to normal forms —using Lie transforms- is presented. They arrive to a
recursive algorithm to obtain the transformed equations from original ones. It follows a
review of ideas behind their algorithm and how to use them in our problem.

Suppose the following formal expansions:

Hz.w) =) fulz,y), fe € V(k,n+m,n)

k>2
g(z,y) = ; ge(z,y), gk € V{k,n +m,m) (2.4)

h(z) =Y ha(z), ki € V(k,n,m)
k>2
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It must be noticed that kg can be identified to v; (see 1.4). And we will also suppose

W(Z,9), fi € V{k,n+m,n)
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(2.5)
k("ia g)a gk € V(kan +m, m)
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Comparing (2.3) and (1.5) it must be concluded that
Gx(%,0) = =Li(ha(T)) + ne(3), k22 (2.6)

In the above notation our objective is to obtain kg, fi.
If s =X, y=¢Y¥, e € Rin (1.1}, then

X = AX + ) Fu(X,Y)e* [R!
k21

Y =BY + Y G(X,Y)e* /k!
k>t

(2.7)

where

Fi(X,Y) =k fraa(X,Y)

CuX,¥) = Mgen(X,¥), k21 (2:8)

and they are homogeneous polynomials in (X,Y) of degree ¥ + 1. Also define
Fo(X,Y)= AX and Go(X,Y) = BY.
Now consider a transformation of variables:

(f')=(§)+(H(OX’))=(Y’+2,,f,1{k(x')) 29)

where the H; are homogeneous in X of degre k + 1. Then the differential equations for
(X,Y) are

X = A% + Y F(X,¥)e/k!
k>1

Y =BV + 3 Gu( X,V )ek k!
k21

(2.10}

where the Fi, Gy are homogeneous polynomials in (X,Y) of degree k + 1. Consequently,
the changes of variables z = €X, y = ¢¥'; & = €X, § = €Y and (2.9) yield the system (2.2)
provided that 3

Hi(X) = klhi(X), k21 (2.11)
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and so we obtain

F(X,¥) =k fin(X,7)

2.12
GE(X7Y) = k!gk+l(Xv Y) ( )

In fact, transforming (2.7) by the chenges defined by (2.9) is equivalent to trans-
forming (1.1) by the changes of the form (2.1). The reason justifying the above set of
transformations is that the £y, Gy can be recursively computed from F}, G, Hi,i S k5
and so, the relations (2.8), (2.11) and {2.12) eneble us to calculate recursively fi, g .

We introduce now the following notation:

6R(X Y) T(X)

R(X.Y) 0 ) _
(S(XYY))X(T(X))‘ 6S(X,Y)T(X) ar(x (2.13)
oY

) ———*R(X,Y)
Notice that this convention is related to the Lie bracket operator when applied to the

two particular functions above.
If we define the sequence

by the recursive relations:

F}0=F}, G(I,=Gla l=012
7)- (550 () (a2
(G; G;+: ,_Eo G:_; HJ‘+1
then it can be proved ([3], [§]):

EY_ (5 _
(Q)‘(Gf’;)’ k=1,2,... (2.15)

We remark that the computations (2.14) can be accomplished by considering the
so-called Lie triangle:

z

2z

4 S 21 where Z} = (F‘:) ,
i
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and each element can be calculated by using the elements in the column one step to the
left and up. From (2.15) the searched elements are Z5§ , which are on the diagonal of Lie
triangle. Note that in each row the terms involved have always the same degree.

Remember that our objective is to obtain Ay, Fi, k£ = 2, and now, since (2.11), (2.12),
it is the same to compute Hi, Fi, k£ = 1. From (2.12), the condition §(&,0) = 0 becomes
Gu(X,0) =0, £ > 1, and then we can write (see 2.6 and 2.11):

Gul(R,0) = G5(X,0) = M {-Lins() 4 min(R)) =0, k21 (216)

We recognize in (2.16) the equation satisfying the k-approximation of the center man-
ifold, which is obtained in a recursive way as the second component of Z¢ element on the
diagonal of Lie triangle. Furthermore, the first component of Z¥ is precisely Fi (see (2.15))
which leads us to the reduced system.

We can rewrite (2.16) as

Lisr(He(X)) = Niga(X), k21 (217}

where Niy1(-) = klng41(-). A key observation is that we can split the algorithm in two
branches, i.e. it is more convenient to compute Ly, on one hand and Ny, ; on the other
hand. Thus, our aim will be now to obtain separately the two sides of (2.17).

We now turn to perform some adaptations which permits us to achieve Niy,. For
that we set

i _wi 0
Ge-i =Wiit (-LHI(Hk(X))

and then it can be strictly proved that a recursive relation analogous to (2.14) holds for
the W's. In fact the last term in the summatory leading to Z}_, (i.e. with ; =k —1)
becomes

), k>1, 1<i<k (2.18)

ke (H (X)) ("Lk-H(on(X))) (2.19)
and then,
Wies = (Fk) * ;,( ) (g::j_l ) (H?“) (2.20)

Furthermore, taking into account that

(s&)) g (T&')) - (8)

i 0 _ i
Z' X (HJ+]) = W, X (HJ+1) (221)

we obtain
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and therefore

k—i .
Wi =Wil,+ (k,— ’)WILZ?-; x (H:’“) , 2<i<k (2.22)

=0

for all k£ > 1. With this notation, we construct a similar triangle without the first column:

Wo
wi wg
w} wi wg

Wi wi wP wg

Note that (2.16) together with (2.18) implies that the first n components of Wy and
Z% are the same, giving us Fy, and the last m components now provide us Ny4;. This
strategy along with the determination of Ly 4, for each & (see (3.1)) allows us the setting
of the linear system (2.17).

In practice, the final objective is usually the reduced system and it should be noticed
that computing the first n components of the next row in the above triangle up to W, ,,
the (k 4 1)-approximation to the reduced equation is obtained.

3. Programming aspects

The above approach permits us to set up a computer algebra algorithm which proceeds
iteratively up to a settled order. It is possible to implement the algorithm by selecting the
appropriate primitives of 2 computer algebra system merely reproducing the mentioned
steps. However, as noted in the introduction, it is more efficient and less expensive to use
a vectorial representation of the functions involved.

We constrain ourselves to work in V(& + 1,n,m) choosing an ordered basis. In par-
ticular, we will use a lexicographic ordered basis.

3.1. Representation of Ly,

Let us denote d the number of different (k + 1)-degree monomials in n-vector = and
let Pyyy = {p', 5%, ...,p"} be the ordered set of n-indices with module k + 1. If e[* stands
for the I-th element of a canonical m-dimensional basis, then

Bisi={o" -el:1<i<d, p'€Piy, 1<i<m)

is & basis of V(k + 1,n,m) where 2?' = xf"a:‘;" cogbn
To determine the matrix representation of Ly over By, observe that
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i P . e i

Lisi(z? €)= O -el") 4. _ Bor et =

dz
‘ i I R -'l'P‘ ‘ T
= (=buz? , —byaz? ,...,):E(p;a.,x,z—) —byz® ... —bma® )T (3.11)
=1r=1 .

where

z, z%,  otherwise.

[ i ‘ o
1:_?‘_.:{3,‘:)’;;;2,,,31:. l"'xﬁna ‘fp'a>l,
Thus (3.1.1) provides the image of (({ — 1)d + 1)-th basic vector in 8Bx4+;. To obtain the
By, -representation of above m-vector we can organize the matrix representation of Ly 44
as a matrix of m x m blocks, each block being a d x d matrix. Then we can identify

A—-byI =bl - byl
—bzll .A - 6221 e -b2mI
Lk+1 = . : . : (3.1.2)
=bmil  =bmal o A=yl

where I is the identity of order d and A is a square matrix independent on ! which arises
from the double sumnmatory in (3.1.1).

Regarding (3.1.2), it is obvious the importance of the structure of matrix B. In fact,
if B is triangular we can solve the corresponding system (2.17) by means of a backward-
substitution process. Without loss of generality, we can suppose that the matrix B is in
its Jordan form, and then we might adopt specific methods to solve (2.17).

The matrix A conditiones strongly the structure of A that should meke possible in
several typical cases we might adopt specific resolution methods. In any case A is certainly
sparse and a deeper study of its structure can be of interest.

3.2. Computing Ny,

Now we will denote d' the number of different (£ 4 1)-degree monomials in (n +
m)-vector (z,y) and let Qrsy = {¢’,¢%...,¢%} be the ordered set of (n + m)-indices
with module k + 1 while e*™ stands for the {-th element of a canonical basis in R"**™.
To represent adequately the W's expressions and (Fi,Gy), we can construct a basis of
Vik+1,n+mn+m)by

By = {(z.9) -ef*":1<i<d, ¢ €Qu, 15ISn+m)

In this context to perform (2.20) and (2.22), we will split the corresponding expresions
in terms of basic elements and as the x-operation is clearly linear it is interesting to verify
its behaviour over those elements. Thusif 1 <y <m, ¢ € @i, and p € P, one can
obtain




! P g z? n$m
- eh ~p‘l(x1y) 1 : en+l,v for 1 < ll S n,
2 1

_ (3.2.1)

z,y)?
9n+l,( yy) zP 'exi;':, forn+l1<{ <n+m
(H

where

Gngitg =1 .
(x, y)q _ { x}l zg’ e x%ﬂ ygn+l P y': 2 F y%{'d’m’ lf qu+', Z 1’

yi, (z,y)°, otherwise.

The above expressions enable us to work only with vectorial coefficients instead of
the corresponding polynomisal by means of their representation in By,, B},. For that it

is useful to have defined some auxiliar procedures to handle the basic elements. One can

argument that with this aproach we waste the possibilities of symbolic computation, but
the experience suggests that in most cases computer algebra cannot be effectively used by
merely transcribing formulas. Note that symbolic computation is still needed because the
mentioned coefficients can involve additional parameters. If we adopt no such scheme (i.e.
working directly memory polynomials) we can exhaust rapidly the memory space (thereby
increasing the number of “garbage collection” or what should be worse, causing a machine
“hang-up”). Furthermore the frequent built-in function calls (v.g. derivatives) would be
very time-consuming.

3.3. Program structure
Thus we can summarize the algorithm as follows:
(a) Read data problem A, B, f, ¢ (see (1.1)).
(b) Set kuax, the wanted accuracy degree.
(c) Build the besis B} for 2 < k < kyex. Note that By is easily localized into Bj.
{d) Set up the vectorial coefficients of data functions f,g.
(e) Loop: for k=1,... ,kpex — 1
(e.1) Determine A corresponding to & + 1
(e.2) Compute W} _, according to (2.20) and (3.2.1)
(¢.3) Loop: for [ =2,..., & compute W] _, following (2.22) and (3.2.1)
(e.4) Segregate Nj4) from Wk
(e.5) Solve (2.17) using (3.1.2) to obtain Hy.
(f) Write results.

4. Computational results
We have obtained a first implementation of the above algorithm on REDUCE 3.2 [7].
Now we present the results achieved for two examples. We want to mention that in both
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cases the use of the algorithm has been crucial. Previous calculations by hand (we do not
recommend it) or by reproducing (1.3) directly on a computer algebra system required
tedious work, even though a deeper analysis to remove unnecessary terms had been made.

4.1, Example 1 (n=3,m = 1, kpnex = 4)

In (1], & system dynamics model representing the evolution of three urban zones with
& diffusion mechanism among zones is presented. After a certain change of variables, the
model can be written as

-2y 2ez
+ 4 22
. 6 6 3
TR
y]= —ou v ay 7= T =
i' 0 0 ap z 2\/62J§2
I AL
VERNRVE IRVE]
33+£_2.+a‘27 3:2_2.’_&
32 2 2 2\/§ V2
+ ap g/—+y,22 d-&—uﬁ-\/éxy:
2 2 T
2 oz 2 (4.1.1)
A Y
w2 vz 3
1 t e, Y & 2,2 _ o2y d22(@? +4P)
—(-E o+ L o -t —
I ey L i - ety A,

+a L(zy(ﬁ + 3zy?) + 8yz? + daeyz?(2? +9%) | dya(e® +47)
' V2 3B 3v6 V3 NG
_1_(£ + vyt 2t 4z(x® — 3zy?)
V3 2

)

22, Y = T 2\ _
xy+2+3+2a(x+y) 35 )
where x,y, z are related with the urban development of each zone, u stands for the diffusion
coefficient and ag,a;,a;,a; are parameters defining the nonlinearity involved. We adopt
u as the bifurcation parameter, and then we must add to (4.1.1) & new equation: ¢ = 0.

It can be easily seen that the critical value of the bifurcation parameter is u. = 0 and
that (4.1.1) is in correspoudence with (1.1) if weset 2, =2, =y, z3=1u, ¥ =72,
where A is now a tridimensional zero-matrix and B = (qp).

The model is equivariant under a simmetry group (the dihedral group D;) and this
fact made possible -by using a specific basis obtained with the use of complex variables- to
compute by hand the corresponding center manifold. We present here the results obtained
up to fourth order with our algorithm that are in full concordance with the previous
calculations [9]:
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agap + 247,
h(z,y,u)=— y:— 22 +6 \/_—my
(723 ) m fao vl 243

aoag+2a1 23 u?
- 36
\/' Frut VIE—— fao
3 10a?
_\/5(104123;_0;02 4+3\/‘ (10022'{; l —36"/- 3 u? (412)
agas + aya; 5 5 3aga; 4+ 10af 5 ki L IR
—o =12 Joi? 'y \/5———2(1g zou \/-—2\/6@2, "+

4.2. Example 2 (n =4,m =1, kpex = 3)
Our second example arise from the study of an electronic circuit partially analyzed in
[6). The equations of the model are:

( ) (—(ﬂ+v)/r Blr 0)(
= 8 -8 -1
0 1 0

where z,y, z are the state variables corresponding to voltages and currents in the circuit
and r, a3, b; are additional parameters while 8, v are bifurcation parameters. We try to
compute the center manifold corresponding to 3. = —v, = /r. Insuch case, the linear part
of (4.2.1) presents a double-zero eigenvalue with Riesz index 2 and a simple eigenvalue equal
to —/r. To achieve a formulation according to (1.1}, we must perform some preparations.

Firstly we make a translation over 8, v: 8 = 8 — 8., ¥ = v — v, so that bifurcation
occurs in & neighbourhood of 8 = 0, # = 0. Also we must include in (4.2.1) the equations

B =0, ¥ = 0. Furthermore, we make a change of variables

x 3} _
y|=Plaz), zs=0, a4=7
z ¥

which leads us to the Jordan form of linear part in (4.2.1) (P is the matrix of principal
vectors for # = f,, v = v.) and now we are in correspondence with (1.1).

In a previous work [4], we followed the approach in [5] but we exhausted the computing
facilities at our disposal without success. Only after a strong guidance of the symbolic
computations we achieved our purpose. By using the algorithm we obtain the solution in
a few cpu-minutes of microVAX-1I:

~24 4 —(1/ -z)’
0

z
y
z

N o 8.
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1 r+1 r—2)
h(z1, 22,23, 24) = ‘/- 3 1’2 ¢+ ‘/- 3$2m3 BT - T 1% ( ) :

r®+2r2 —5r —8 20+ 72+ 9r +4
+ —-_—6 r} TaX
r r
+ —a3r? + 3ar® + 6(b; —a3)r + 6(by + a3) 34 -r+3
N *2 NG
2 3 2
+ H:[;r:ﬁx,xm + %ﬁmz (4.2.2)
a3r +2(63 - 03)7‘ + 2(63 + (13)
5
—a)r + (b +ﬂa) b3r+(b3 +03)
Vrrd 2= ré

T2X3T4 —

-3

+3(

5. Concluding remarks

A new algorithm for symbolic computation of center manifolds is introduced. Using
an algorithm to compute normal forms, we derive a recursive algorithm to calculate center
manifolds. Rand and Keith [10] use this approach but not arriving to an iterative scheme
and so making not advantages of full capability of normal form transformations.

In our opinion this algorithm is & good exponent of the way computer algebra must
be guided to perform effectively a complex calculation. We have tested the algorithm with
different examples already solved by other means (two of them are presented here) and it
has overcame several computational difficulties in previous approaches. The program used
-written in REDUCE 3.2- is available at request to authors.

Future research should be directed to some enhacements already mentioned. In partic-
ular, we must investigate what polynomial internal representation is best for our purposes
and the possible ameliorations depending on the actual bifurcations involved. Further
in presence of simmetry a choice of adequate bases should be fruitful, by lowering the
dimension of vectoriel representation managed.
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