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Abstract

An exponential system is a system of equations (§ =
0,FE = 0), where S is a finite set of polynomials
in Qz1,...,Tn, Y1, -, Yn), and E is a subset of {y; ~
e*, ..., yn — €®~}. In this paper, Wu’s method is used
effectively to decompose such systems into finitely many
subsystems which have triangular algebraic part, and
whose solution sets in C*® are equidemensional and also,
in a sense to be explained, non singular. The problem
of solving exponential systems in bounded regions of R?
is also discussed.

1 Introduction

An exponential system is a system of equations S =
0,E = 0, where S is a finite set of polynomials
in Qfzy,...,2n, ¥1,--,Yn), and E is a subset of {y; —
et .., yn —€"*}. In this paper, Wu’s method is used
effectively to decompose such systems into finitely many
subsystems which have triangular algebraic part, and
whose solution sets in C?” are equidemensional and also,
in a sense to be explained, non singular.

The resulting zero structure theorem is partly mo-
tivated by interest in the elementary points and num-
bers, defined as follows: an elementary point is a point
in C? which is a non-singular solution of an exponen-
tial system (S, E) = 0, whose solution set has dimen-
sion 0; an elementery number is a complex number of
the form p(x1, ..., Tn, 41, ..., Yn), Where p is a polynomial
with rational coefficients, and (21, ..., Zp, Y1, ..., Yn) is an
elementary point.

A basic unsolved problem about the elementary
numbers is how to decide, given a description, as above,
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of an elementary number, whether or not the number
is zero. This is called the elementary constant prob-
lem [see Richardson, 1992]. The elementary constant
problem is related to Schanuel’s conjecture, which says
that if 24, ..., z,, are complex numbers linearly indepen-
dent over the rationals, then (21, ..., £, €%, ..., ") have
transcendence rank at least n.

In the second section, two simple applications of the
zero structure theorem are given. It is shown that if
a point in C?” is an isolated solution of an exponen-
tial system, then the point itself is elementary, that is,
another system can be found of which the point is a
non singular solution. It is also shown that any coun-
terexample to Schanuel’s conjecture is necessarily ele-
mentary, unless it is part of a curve of counterexamples.

The zero structure theorem can also be used to help
decide whether or not an exponential system has a so-
lution in a bounded region in R", and to find all the
solutions if it does have any. The idea here is to break
the zero set of a system up into non singular parts, and
then to use topological methods to solve the parts. This
is discussed in the last section. The problem of solving
zero dimensional exponential systems is reduced to cer-
tain oracles, notably an oracle for the elementary con-
stant problem.

2 Zero Structure Theorem

Assume that the variables, z1,...,2,,¥1,..., Yo are or-
dered in some way by importance, and extend this in
the usual way to lexicographic order on the polynomi-
als.

Systems in triangular form are in some ways easy to
deal with and understand. Wu’s method is a systematic
way to put systems of equations in triangular form. The
basic definitions, given below, are from Wu.

2.1 basic definitions for Wu’s method

The leading variable of a polynomial is the variable most
important in the ordering which occurs in the polyno-
mial. We assume here that polynomials are written, in
normal form, as polynomials in their leading variable,
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with coefficients which are polynomials, also in normal
form, in less important variables. So if y is the leading
variable of a polynomial p, p would be in the form

C’ny"’ +..4+Co

where n is called the degree of p, and C,,, assumed
to be non zero, is called the leading coefficient of p.

If p and q are polynomials, and y is the leading var1-
able of ¢, we will say that p is reduced with respect to
q if the degree of y in p is less than the degree of y in
¢. It may happen that p is reduced with respect to ¢ al-
though the leading variable of p is more important than
the leading variable of q.

For polynomials p and ¢, we will say p < ¢ if the
leading variable of p is less important than the leading
variable of ¢, or if the leading variables are the same
and the degree of p is less than the degree of ¢. If both
the leading variables and the degrees of p and ¢ are the
same, we will say p ~ ¢.

Let S = (p1,...,pr) be a list of polynomials. We will
say that S is an ascending set if, for each ¢ < r, the
leading variable of p; is less important than the leading
variable of p;41, and if, for all § < ¢, p; is reduced with
respect to p;.

The next step is to put an order on ascending sets.
IfS = (p1,-.-,pr) and S5 = (gi,...,4s) are ascending
sets, we will say S, < S; if, for some k, p1 ~ ¢; and ...
and pr ~ ¢ and pr41 < ey, oxif s <randpr ~q1
and ... and p, ~ g¢;.

Ascending sets are well ordered by <.

If
p and @ are polynomials, let pseudoRemainder{Q,p)
be the result of expressing p and @ as polynomials in
the leading variable of p, dividing p into @, and then
multiplying the remainder by some power of the lead-
ing coeflicient of p to clear denominators.

If S = (p1,...,pr) is an ascending set , and @Q is
a polynomial, there is a polynomial Rem(@, S), which
is reduced with respect to every polynomial in S, and
satisfies

I[Ire= Z ¢:pi + Rem(Q, S)

where I; is the leading coefficient of p;, and the ex-
ponents n;
are chosen to be minimal. Rem(Q,S) is obtained by
successive division of polynomials of S into @, and then
clearing denominators. That is, Rem(Q, (p1,...,pr)) =
Rem(pseudoRemainder(Q, p,), (p1,..-Pr-1)).
Rem(Q,S) is called the pseudo remainder of @ with
respect to S.

Characteristic set algorithm: Using the method of
Wu, we can, given any finite set S of polynomials, find
an ascending set A so that the polynomials in A are
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all in the ideal generated by the polynomials in S, and
Rem(Q,4) = 0 for all @ in S. Thus A = 0 implies
S =0, provided that I(A) # 0, where I(A) is the prod-
uct of the leading coefficients of A. Such an ascending
set A is called a characteristic set of S. A method of
finding a characteristic set is the following. First pick
any ascending set, A;, of minimal order, which is a sub-
set of S. Then find pseudo remainders of merbers of
S with respect to A;. If all the pseudo remainders are
0, then A; is characteristic. If not all pseudo remain-
ders are zero, use a non zero remainder to construct an
ascending set A, of lower order than A,, with the poly-
nomials in A, in the ideal generated by S. Continue
this process. The ascending sets generated are decreas-
ing in order, and the ordering on ascending sets is well
founded, so the process eventually terminates with a
characteristic set.

2.2 Decomposition of algebraic and ex-
ponential systems

If S is a finite set of polynomials, in variables zy, ..., zg,
let C*(S = 0) be the subset of complex & space on which
S = 0. In general, if Ls is a list of conditions, using k
variables, C*(Ls) will be the subset of C* on which Ls
is true.

Wu-Ritt Zero Structure Theorem. Given any
finite set of polynomials, S, in vartables zy,..., 2z, we
can effectively write C¥(S = 0) as a union, for i
1,...,m of C¥(S; =0, I; # 0), where S; is an ascending
set and I; is the product of leading coefficients of S;.

Proof. (Slightly modified from Wu.) We generate a
list of ascending sets as follows. Suppose we find 4, a
characteristic set of S. Let I be the product of leading
coefficients of A. We note

C*A=0,I£0)CCHS=0)C C*A=0)

Take the pseudo remainder, R, of I with respect to
A. If this is not zero, add (A = 0,1 # 0) to the list
of ascending sets. Then add R to S, and repeat the
process.

It might happen, however, that the remainder of /
with respect to A is zero. This means that (A =0, #
0) is not possible. We know then that one of the leading
coefficients of A must be zero, but we don’t know which
one. Let Ci,...,C, be a minimal sublist of the leading
coefficients of polynomials in A4, such that their product
has pseudo remainder zero with respect to A. Form Sj,
for : = 2,...,r by adding C; to S. Continue the process
with each S; in turn, terminating each branch only when
an inconsistent ascending set is formed, i.e. one which
sets a non zero rational to zero. On each branch the



ascending sets constructed are descending in order, so
the whole process eventually terminates.

In an ascending set, call the leading variables of
polynomials dependent, and the other variables inde-
pendent. The Wu-Ritt zero structure theorem breaks
algebraic sets into unions of sets defined by ascending
sets. It would be nice if an ascending set had the prop-
erty that its dependent variables were always locally de-
fined as non singular functions of the independent vari-
ables. An ascending set modified to have this property
will be called stable. Only a small change is needed to
get this desirable property.

We define a stable ascending set of conditions to be
(§=0,I#0,J #0), where S is an ascending set and [
is the product of leading coeflicients of S, and J is the
product of the partial derivatives of the polynomials in
S with respect to their leading variables.

Note that if (S = 0,1 # 0,J # 0) is a stable as-
cending set, and we regard the independent variables as
parameters, then S has the same number of dependent
variables as functions, and J above is just the determi-
nant of the Jacobian of S.

Stable Algebraic Zero Structure Theorem
Given any finite set of polynomials, S, in variables
21, .-y 2k, We can effectively write C¥(S = 0) as a union,
fori=1,...m of stable ascending sets C*¥(S; = 0,I; #
0,J; # 0), where S; is an ascending set and I; is the
product of leading coefficients of S;, and J; is the prod-
uct of the partial derivatives of the polynomials in S;
with respect to their leading variables.

Proof. The proof is almost the same as before. Let
A be a characteristic set of §. Let I be the product of
leading coefficients, and let J the the product of partial
derivatives of polynomials in A with respect to their
leading variables. Of course (A = 0,1 # 0,J # 0)
is a stable ascending set of conditions. Now form the
product of J and I and take the pseudo remainder of
this with respect to A. Call this remainder R.

If R is non zero, put the stable ascending set (A =
0,1+#0,J # 0) on the list being constructed. Then add
R to S and continue as before.

Otherwise, if R is zero, we know that one of the fac-
tors of I or J must be zero. All of these factors by
themselves are reduced with respect to A. Form a min-
imal sublist of these factors whose product has remain-
der zero with respect to A. The algorithm branches as
above, one branch for each factor in the sublist.

2.3 Exponential Systems

The intention now is to carry the above constructions

over to exponential systems. We want to break the zero

sets up into equidimensional, non singular parts.
Exponential systems are complicated by the not very
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well understood interaction between algebraic and ex-
ponential conditions.
Example.

(1,‘1-—1)(1,‘1—2):0
201+ @2 —23=0

Yiys — t1ys =0

y1 ="
Y2 = €2
ys = €

As it stands this set of equations is not independent.
The value of ; must be 1, so the third equation is a
consequence of the others and the functional equation
for €. So the same zero set could be defined from two
polynomial equations, and three exponential equations.

However, one of the main problems about exponen-
tial systems is how to extract all the algebraic infor-
mation which is implicit in them. We want to put as
much information as possible into the algebraic part of
the system. The hope, in fact, is that all the algebraic
consequences of the whole system should be already con-
sequences of the algebraic part of the defining equations
of the system.

i From the point of view of this paper, the above ex-
ample would break into three parts: 1) the three poly-
nornial equations, 2) the first two exponential equations,
and 3) the last exponential equation, which is called re-
dundant. The first five equations are independent. The
zero set defined by the first five equations divides into
two branches, depending on the value of z;. On one
of the branches, the redundant equation is identically
true; on the other branch, the redundant equation is
never satisfied. The only effect of the redundant equa-
tion is to pick out a certain subset of the connected
components defined by the other equations. In this ex-
amnple, the subset can also be defined algebraically, but
I don’t know whether or not this always happens.

In this example the solution set may be described as
a curve, with all variables defined as functions of 2. So
we would say z2 can be taken as an independent vari-
able, and the others can be taken as dependent. On the
curve the transcendence rank of (&1, y1, 2, Y2, £3, Y3) is
three at a generic point z2, but drops to one if x5 is
rational.

In general, low transcendence
rank of (z1,...,&n,Y1,...,¥n) In exponential systems is
related to linear relations among (&1, ..., %n). The best
discussion of this is in a paper by Rosenlicht [1976].

Before the zero structure theorem we need some def-
initions.



If p is a polynomial, let 7p be the gradient of p.
This gradient is orthogonal to any level surface of p.

Let v(z1), ..., v{(2n), v(¥1),...,v(yn) be unit vectors
on the coordinate axes for variables 21, ..., Zn, %1, ..., Yn
respectively. Associated with each exponential condi-
tion y; = €+ is the polynomial vector field

~yivla) + olw)

which is orthogonal to the graph of this exponential
function, z;v(z;) + ™ v(y;).

As before we suppose that E is the full set of expo-
nential conditions, {y1 — €', ...,yn — €}, and let E;
be a subset of E. Suppose E; is {wi — €', ..., w; —
es}. Let S = {p1,...,pr} be a set of polynomials in
Qlz1, .., Tn, Y1, -.-, Yn]. We will say that the conditions
(S =0, E; = 0) are independent at a point if the vectors
{vp1, s VPr, —w1v(21)+v(w1), ..., wjv(z; )+v(w; )} are
linearly independent at that point.

Independence, at a solution point, means that
the surfaces described by the separate conditions are
transversal. At a general point, independence means
that the level surfaces of the functions are transversal
at that point.

Associated with the set of vectors is the differential
matrix, df(S, E1). This has r rows from the polynomial
gradients, and j rows from the exponential conditions,
and it has 2n columns. df(S, Eq) =

Op1/0%, 0p1/0yn
6pr/aml 3Pr/3:yn
—1wy .|

The 2n columns of the differential matrix correspond
to the variables, and the rows correspond to equations.
We can either think of the matrix as defining a vector
field, or we can think of it as defining a relationship
among the differentials.

To say that the conditions in (S, E1) = 0 are inde-
pendent is equivalent to saying that r+j < 2n and some
maximal (i.e. »+ j by r+ j) minor of the differential
matrix has determinant which is not zero. Associated
with any such minor is a subset of r+ j of the variables.

Define a smooth curve in C?* to be the image of a
function C : [0,1] — C?", each coordinate of which is
represented by an absolutely convergent power series on
the domain.

We define a triangular condition to be one of the
form (S = 0,E1 = 0,E, = 0,1 # 0,J # 0), where the
following five properties hold:

1) S is an ascending set in Q[zy, ..., Zpn, Y1, ---» Yn)

2) (£, E2) is a partition of the full exponential set
E
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3) I is the product of the leading coefficients of S

4) J # 0 — (S, E1) independent; J is the deter-
minant of a maximal minor of the differential matrix.
Rem(J,8) #0.

5) E, is such that if C(¢) is any smooth curve in
C?" on which (S = 0,E; = 0,1 # 0,J # 0), then any
yi — e in E, is either identically zero on C(t) or never
ZEro.

The conditions in E3 will be called redundant. On
each connected component defined by the other con-
ditions, the redundant conditions are either identically
true, or never true. The redundant conditions pick
out a subset of the components defined by the oth-
ers. (In terms of differential algebra, if we extend
Qlz1, -y Tn, Y1, ..., Yn] to a differential field on which
a triangular condition is true, the redundant terms,
y; — €%, would be constants.)

The determinant J is obtained from some set of
columns of the differential matrix. The variables cor-
responding to these columns will be called dependent.
In case several sets of variables would give the same de-
terminant J, we pick the set of dependent variables to
be the minimal such set in the lexicographic ordering.
The other variables, if any, will be called independent.
Since J # 0, the dependent variables are locally smooth
non singular functions of the independent ones. The set
defined by a triangular condition is either equidimen-
sional and non singular, or empty. If non empty, the
dimension can be read off: it is 2n — r — j.

Triangular conditions are ordered according to the
order on their ascending sets.

Let (S = 0,E = 0) be an exponential system. A
maximal triangular condition for this is a condition
(A=0,E1=0,E,=0,I#0,J #0), where

1) A is an ascending set and a subset of the ideal
generated by S, and I is the product of the leading
coefficients of A

2) Rem(S,A) =0, Rem(J,A) # 0

3) J # 0 implies that (A = 0, £; = 0) are indepen-
dent.

4) E; is maximal. This means that if we formed E;
by taking an exponential w — e* from F3 and adding it
to Eq, and if J* was the determinant of any maximal
sized minor of the differential matrix associated with
(A =0,E} =0), then Rem(J*,A) = 0.

5) (E1, E9) is a partition of £

Maximal triangular conditions play the same role for
exponential systems as characteristic sets do for poly-
nomial systems.

Maximal triangular conditions are also triangular
conditions. We need to verify that the conditions Eq are
redundant. Let C(t) be a smooth curve in C?". Suppose
that on C(t) we have (A = 0,E; = 0,1 # 0,7 # 0).
So C(t) is orthogonal to the vectors associated with



(A=0,E; =0). Let w—e” be in Fy. —wv(z) + v(w)
is a linear combination of vectors orthogonal to C(t).
Let z(f) and w(t) be the coraponents of z and w on
C(t). We have z/(t)w - v'(t) = 0. Thus w = ke?, for
some constant k on C(t). So w — e* is either never 0 or
identically zero on the curve.

It is clear that maximal triangular sets can be found
for any exponential system (S = 0,F = 0). We just
find a characteristic set A for S, and then pick E; max-
imal. The maximality condition depends only on taking
pseudo remainders, and can, therefore, be tested.

Stable Exponential Zero Structure Theorem.
For any ezponential system, (S = 0,E = 0), we can
effectively find finitely many triangular conditions \; =
(S5 =0,E1;,=0,E2;=0,L; #0,J; #0),¢=1,... .,k so
that

CMS=0E=0= [] C™&)

i=1,...,k

Proof. Find a maximal triangular set for (S =
0,E = 0). Suppose thisis (A =0,E, =0,E; = 0,1 #
0, # 0). Let R = Rem(I * J,A). If R is not zero,
add the maximal triangular condition to the list being
formed. Also add R to S, and continue the process. In
case R is zero, we know that the maximal triangular
condition we have found is impossible. Either J or one
of the factors of I must be zero if S is zero. Choos-
ing from J and the set of leading coefficients, form a
minimal product which has pseudo remainder zero. Let
C1, ..., Cy be the factors in this minimal product. Now
form Si,..., S, by adding, respectively Cj,...,C, to S.
Continue the process on each of Sy, ..., S,.

The process terminates because the triangular condi-
tions found on each branch of this process are decreasing
in order.

Remark. It seems useful to think of the triangular
sets obtained above as arranged in a tree. The subtree
below each triangular condition (S = 0,E; = 0, E; =
0, # 0,J # 0) is a decomposition of (A = 0,5 =
0,E1 = 0,E, = 0,IJ = 0), where (4, E1, E,) is the
original system.

Sampling Theorem Let X be a connected compo-
nent of the solution set, in C?* or R*™™, of an ezponen-
tial system (S, E) = 0. Then X contains an elementary
point,

Proof. We may as well assume that X is described
by a triangular condition of dimension d, (A =0, E, =
0,E, =0, #£0,J # 0). All we need is to find some
lower dimensional subset of X which is described by
an exponential system. This can be obtained from any
non constant function which has a minimum or a max-
imum on X, regarding everything as a function of the
independent variables. For this function we could use,
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for example, a sum of the squares of the variables and
(1/1)% + (1/J)%; it is not possible to escape from the
component without sending such a sum to infinity, so
the sum must have a minimum point on the component.
Or, more simply, since the dependent variables are lo-
cally functions of the independent ones, we could just
substitute some rational numbers for the independent
variables.

3 Applications

The point of the first theorem is just that isolated so-
lutions of an exponential system are also non singular
solutions of another exponential system.

Theorem If « is a point in C?® which is an isolated
solution of an exponential system (S = 0, E = 0), then
« s an elementary point.

Proof. Decompose (S = 0,E = 0) into triangular
conditions, as in the zero structure theorem. The point
« must satisfy one of these conditions, say (4 =0, E; =
0,E, =0,1#£0,J # 0). A triangular condition satisfied
by « can’t have dimension greater than zero, or o would
not be isolated. So « satisfies a triangular condition
of dimension zero, i.e. « is a non singular solution of
A=0,E; =0). So « is elementary.

Theorem Er-
ther every counterezample to Schanuel’s conjecture is
elementary, or there is an analytic non constant curve
(z1(2), ..., za(t)) such that (z1(t), ..., z,(t)) are linearly
independent over the rationals, but the transcendence
rank of (£1(2), ..., zn(t), e, .. €™ (D) is < n.

Proof. Let (zy,..,2,) be a counterexample
to Schanuel’s conjecture. The numbers (zi,...,z5)
are linearly independent over the rationals, and
(x1, ..., Tn, €71, ..., €7") has transcendence rank less than
n. Let (y1,...,yn) = (¢°1,...,€"). Let S be an ascend-
ing set of lowest order so that S = 0 at this point.
S has more than n polynomials in it. Now decom-
pose (S = 0,E = 0) into triangular conditions. Let
(A=0,E =0,E, =0,I #0,J # 0) be a trian-
gular condition in this decomposition which contains
(:Eia vy &y Yty ey yﬂ)

If the dimension of the set defined by this condition
is zero, the points are elementary, and we are finished.

Suppose the dimension of the set defined by this
condition were more than zero. Let (z1(2),...,2(1))
be an analytic curve in the solution set. These
functions are linearly independent over the rationals.
On the other hand, A has more than n indepen-
dent polynomials in it, so the transcendence rank of
(£1(2), ..., zn(t), €22 . "=} is less than n.



4 Finding real solutions of expo-
nential systems

Let (S, E) be an exponential system, and suppose f =
(S,E) : R* — R¥. Let D be an open bounded semial-
gebraic subset of R*. We want to discover the number
of distinct solutions of f = 0 in D and isolate them.

We will suppose known in advance that f = 0 has at
most finitely many solutions in D, and that there is no
solution on the boundary of D. It is shown below that
the problem can be solved, provided we had oracles for
three other problems:

pl) The elementary constant problem

p2) Find the topological degree of f = (4,E) :
R* — RF over a domain D’ which is an open, bounded
semialgebraic subset of R¥, and which has no solution
of f =0 on its boundary.

p3) Given isolated solution « of exponential system
(8 = 0,E = 0) in D, find a neighbourhood N(a)
which contains only one solution of (S = 0,F = 0).
(The system here may have any finite number of equa-
tions.) We suppose we are given « in the standard way
as the nonsingular solution of an exponential system
(A=0,E; =0), with 2n equations and the same num-
ber of unknowns. We are also given a neighbourhood in
which this defining system for « has only one solution.

Problem p2) can be done by standard methods, in-
volving construction of a triangulation of the boundary
of D' [Cronin, 1964]. Some progress has recently been
made with pl), depending on Schanuel’s conjecture. I
do not know how to do the innocuous looking p3).

Note that if D’ is a domain in which the Jacobian
of f is non singular, and f = 0 has no solution on the
boundary, then the absolute value of the topological de-
gree of f over D' gives us just the number of solutions
of f = 0 in the domain. It is remarkable that in such
a domain we can decide whether or not f = 0 has a
solution, even without solving the constant problem.

Theorem Given oracles for pl), p2), and p3) and
given an ezponential system f = (S, E) : R¥ — R*, and
open, bounded, semialgebraic set D C RF, such that
f =0 has at most finitely many solutions in D, and has
no solutions on the boundary of D, we can decide how
many distinct solutions of f = 0 there are in D, and
isolate them.

Proof. First decompose f = 0 into a tree of triangu-
lar conditions, using the exponential zero structure the-
orem. Discard all the conditions with dimension more
than zero, since there are only finitely many solutions in
D. (If a condition of dimension more than zero is sat-
isfied at all in D, it is satisfied on a curve.) Now start
at the bottom of the tree and work upwards, finding
solutions to the conditions.
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Assurne, inductively, that we are looking at a par-
ticular condition

A=(A=0,E1=0,E2=0,1#0,J#0)

and that so far we have found, and made a list of|
all the solutions to conditions below this.

Now, using p3), we find a little closed neighbourhood
around each of these solutions which does not contain
any other solution to f = 0. Remove the interior of all
these neighbourhoods from D to obtain IV,

The solutions to conditions below A, which have
been removed, were solutions to (S = 0,4 = 0, F =
0,IJ = 0). These were not solutions to A, (since A
insists IJ # 0), and the neighbourhoods we removed
did not accidentally contain solutions to A, since any
solution of A must be an isolated solution to f = 0. So
all the solutions to A which were in D are still in I'.
There is no solution to (f = 0,A = 0,IJ = 0) in the
closure of I.

Find a number M which is an upper bound for the
directional derivatives of all functions in (f, A, IJ) over
D. This can be done by standard methods, since the
functions only involve addition, subtraction, multiplica-
tion and exponentiation.

Now pick a finite set of points in I’ so that the
closure of D’ is covered by balls of radius é centered at
these points. Divide the points, v, into three categories:

1) (f = 0, A = 0) impossible in Nys(7), since one of
the functions in (f, A) has absolute value bigger than
2M6& at «.

2) 1J = 0 impossible in Nys(y) since 1J is bigger in
absolute value than 2M6 at v.

3) All other points.

Suppose, for the sake of a contradiction, that there
were points in category three for arbitrarily small 6.
Then there would be a limit point of category three
points in the closure of I’. At this limit point we would
have (f =0, A = 0,1J = 0). Contradiction.

If § is chosen sufficiently small, category three will
be empty and the boundary of D’ will be covered by
balls around points in category one. Then all solutions
lie in é balls around points in category two. In these
balls, consider g = (4, E1) : R¥ — R¥. The Jacobian of
¢ is not zero in one of these balls, since J # 0.

Now amalgamate the balls around points in category
two into connected components. Let C be one of these
components. Within C, the zero set of ¢ must be zero
dimensional, since J is not zero. On the boundary or
within distance é of the boundary of C, (f, A) is not
0, the Jacobian of ¢ is not zero, and there are at most
finitely many isolated solutions of g = 0. Within dis-
tance 6 of the boundary of C, there are no solutions
of A. It might happen, however, that if § were picked



badly, there could be a solution of ¢ = 0 ezactly on
the boundary of C. (Such a point could not be a so-
lution of f = 0, but it could still cause trouble in the
computation of topological degree for g, since we need
the assumption that g # 0 on the boundary.) Since
we know, however, that there is no solution to f = 0
within é of the boundary of C, we do not lose anything
by drawing another boundary just inside C.

Inscribe a polyhedron in C so that every vertex is
within distance 6 of the boundary of C, and all of C
which is not within distance & of the boundary is inside
the polyhedron, and none of the vertices of the polyhe-
dron are on the boundary of C. Pick the vertices so that
on the boundary of the polyhedron, there is no solution
of ¢ = 0. The idea is just to pick the vertices at random
with rational coordinates, and attempt to verify that
(A, E1) is bounded away from zero on the boundary; if
difficulties are met, perturb the vertices in the area of
the problem, and try again until the condition is met.

We can calculate the topological degree of g over
the polyhedron inside C, by p2). The absolute value
of this gives us just the number of distinct solutions of
g = 0 inside the polyhedron. Once we know the number
of solutions, we can isolate them, by random bisection.
Using pl), we can then decide which of these are also
solutions of A.

Continuing up the tree of conditions in this way, we
eventually get all the solutions to f = 0 in D.

5 Conclusions

The stable exponential zero structure theorem breaks
exponential conditions (S = 0, E = 0 into finite unions
of triangular conditions. This may help in solving the
elementary constant problem. It may also help in solu-
tion finding for exponential systems. Suppose we have
an exponential system (S = 0,F = 0) and we know
that there are only finitely many solutions in R™, and
we want to find how many there are and locate them.
We could break (S = 0,E = 0) into triangular condi-
tions. We need only lock at the dimension zero triangu-
lar conditions. If we could solve these we could solve the
original problem. Solutions to triangular conditions are
of necessity non singular. Since it may be easier to find
non singular solutions (being invariant under homotopy
for example), this should make the original problem eas-
ier to solve. The general idea is to use algebra to break
zero sets into unions of non singular zero sets, and then
to use topological methods to find the non singular zero
sets.
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