J. Symbolic Computation (1999) 27, 21-29
Article No. jsco.1998.0242
Available online at http://www.idealibrary.com on IDE }‘I.

A Polynomial Time Algorithm for Diophantine
Equations in One Variable

FELIPE CUCKER'Y, PASCAL KOIRAN!I AND STEVE SMALE?$

t Department of Mathematics, City University of Hong Kong,
83 Tat Chee Avenue, Kowloon, Hong Kong
YLIP, Ecole Normale Supérieure de Lyon,
46, allée d’Italie, 69364 Lyon Cedex 07, France

We exhibit an algorithm computing, for a polynomial f € z(t], the set of its integer roots.
The running time of the algorithm is polynomial in the size of the sparse encoding of f.
© 1999 Academic Press

1. Introduction

The goal of this paper is to prove the following.

THEOREM 1. There is a polynomial time algorithm which given input f € Z[t] decides
whether f has an integer root and, moreover, the algorithm outputs the set of integer
roots of f.

Here we are using sparse representation of polynomials and the classical (i.e. Turing)
model of computation and complexity. That is, for f € Z[t],

f=agt®+ -+ ait + ag,

we encode f by the list of pairs {(¢,¢;) | 0 < i < d and a; # 0}. The size of the sparse
representation of f is defined by

size(f) = Y (ht(as) + ht(i))
ila; #£0

where ht(a) = log(1+ |a|) is the (logarithmic) height of an integer a € Z. Thus, size(f) is
roughly the number of bits needed to write down the list representing f. Polynomial time
means that the number of bit operations to output the answer is bounded by c(size(f))?
for positive constants ¢, d.

Note that the degree of f is at most 257¢(f) and this exponential dependence is sharp
in the sense that there is no ¢ € N such that the degree of f is bounded by (size(f))? for

TE-mail: macucker@math. cityu.edu.hk
| E-mail: Pascal.Koiran@ens-1yon.fr
8F-mail: masmale@math.cityu.edu.hk

0747-7171/99/010021 + 09 $30.00/0 © 1999 Academic Press

22 F. Cucker et al.

all f. In particular, evaluating f at a given integer £ may be an expensive task since the
size of f(x) may be exponentially large as a function of size(f) and size(z).

Algorithms for sparsely encoded polynomials (or just sparse polynomials as they are
usually called) are usually much less efficient than for the standard (dense) representation
in which f is represented by the list {ag,a1,...,aq}. This is due to the fact that some
polynomials of high degree can be represented in a very compact way.

For dense polynomials, the existence of a real root can be decided efficiently (by Sturm’s
algorithm). It seems to be an open problem whether this can also be done in polynomial
time with the sparse representation. Theorem 1 states that the existence of an integer root
for sparse polynomials can be decided in polynomial time. In fact, all integer roots can
be computed within that time bound. Our algorithm relies in particular on an efficient
procedure for evaluating the sign of f at a given integer . The (efficient) sign evaluation
problem seems to be open for rational values of x.

We note here that a version of Theorem 1 is well-known for dense polynomials. For
a general overview on computer algebra for one-variable polynomials see Akritas (1989)
and Mignotte (1992).

2. Computing signs of sparse polynomials

The main result of this section is the proof that one can evaluate the sign of a polyno-
mial f at € Z in polynomial time. That is, given f € Z[t] and = € Z, we can compute
the quantity

-1 if f() <0
sign(f(z)) =40 if f(z) =0
1 if f(x) >0

in time polynomial in size(z) and size(f).

THEOREM 2. There exists an algorithm which given input © € Z and f € Z[t] computes
the sign of f(x). The halting time of this algorithm is bounded by a polynomial in size(x)
and size(f).

Recall that a straight-line program with one variable is a sequence P = {cy,..., ¢, t,
Uy,...,up} where ¢1,...,¢cp € Z, and for ¢ < ¢, u; = axb with x € {4+, —, x} and a,b two
elements in the sequence preceding u;.

Clearly, u¢ may be considered as a polynomial f(t); we say that P computes f(t). For
every polynomial f(t) there exist straight-line programs computing f(¢). Thus, straight-
line programs are regarded as yet another way to encode polynomials which turns out to
be even more compact than the sparse encoding. We define the size of P to be

k
size(P) = £+ Z size(c;).
i=1

LEMMA 1. Let P be a straight-line program in one variable of size s computing f(t)
and © € Z such that |f(x)] < T for some T > 0. Then f(x) can be computed in time
polynomially bounded in s and size(T).

PROOF. One performs the arithmetic operations (there are at most s of them) in the

Polynomial Time Algorithm 23

ring Zor of integers modulo 27". Fach operation in this ring is done with a number of bit
steps polynomial in size(T').

The result, f(z), is the value of f(z) modulo 21" and therefore, by hypothesis, the
value of f(x) if f(z) >0 and the value 27"+ f(z) if f(z) < 0. Subtracting 27" from f(x)
if f(z) > T we get f(z). O

LEMMA 2. There is an algorithm which given input (x,o) € Z2, x > 0, a > 0 outputs
LeZ, >0, such that 2671 < 2@ < 2441, The halting time is bounded by a polynomial
in size(z) and size(a).

PrOOF. We want to compute £ € Z, £ > 0 satisfying £ — 1 < aloga < £+ 1. To do so,
it is enough to compute an approximation y of log z such that |y — logz| < 1/(2¢) since
in this case

DN =

1
—5 <ay—aloge <

and we may take £ to be the closest integer to ay.

Working in base 2, |y —logz| < 1/(2«) is satisfied if y is computed with [loga +
loglog] + 1 bits of precision. Here, for a real number z, [2] denotes the smallest integer
greater than or equal to z. Define n = 2[loglogz + log «]. By Theorem 6.1 of Brent
(1976) we can compute the first n bits of logz in time O(M(n)logn) where M(n) is
the time required to multiply two positive integers of height at most n. This finishes the
proof. O

PrROOF OF THEOREM 2. We can assume that x > 0 since if z < 0 then f(z) is g(—z)
where g is obtained from f by changing the sign of the coefficients of the monomials with
odd degree. Also, if z = 0 the problem can be solved by looking at the constant term of
f. Thus, suppose = > 0.

Let k be the number of monomials of f so that

f:a1t51+---+akt5’“ with 81 > B2 > -+ > B, > 0.

Then, f(z) can be evaluated using Horner’s rule as follows. Let ap = G5 and o; =
Bi—Bjqrforj=1,...,k—1 Then, fj=a;+o41+ - +og forj=1,... k.
Now we inductively define py = 0 and

8; =pi—1t+ a4 and p; = 8;x™

fori =1,..., k. We then have p; = f(z).

The precise evaluation of f(z) using the sequence of operations given by Horner’s
rule is not achieved in polynomial time since the intermediate results can be too large.
Instead, we will inductively compute a sequence of rough approximations of s; and p;,
with the right sign and of small (i.e. polynomially bounded) size.

More precisely, we will produce a sequence of pairs (m;, M;) € N? and (v;,V;) € N2
and a sequence of integers o;, with ¢ = 1,..., k with the following properties.

Fori=1,...,k, 0, € {-1,0,1} and

p; € [2mi, 2Mi] ifo, =1
pi € [-2M: —2™] if oy = —1 (1)
Di = 0 if o, =0.

24 F. Cucker et al.

Moreover,
0< M; —my; < 3i. (2)
Note that, since m; < log |p;|, we can write m; with a number of bits which is polyno-

mial in S = max{size(z), size(f)}. The same holds for M; since M; < m; + 3i.
The same properties hold for s; and (v;, V;). That is, for i = 1,...k,

$; € [2”",2‘/1'] ifo;, =1
s; € [-2%,—2%] ifo; = -1 (3)
8; = 0 1f g; = 0
and
0<V, —v; <3i—2. (4)

The general appearance of the algorithm is the following.

For input (z, f),

compute qg,...,q, as above and let og = 0.

Then, inductively, fori =1,...,k
(a) compute v;, V; and oy from m;_1, M;_1 and o;_1
(b) compute m; and M; from v;,V; and o;.

Output oy,

We will show now how steps (a) and (b) are done.
For (a), suppose that m;_1, M;_1 and o;_1 are known. Then, we compute v;, V; and
o; as follows.

If o;_1 = 0 then compute £ such that 2¢ < |a;| < 241 and let
v, =4, Vi =¢+1 and o; = sign(a;).
If 0,1 # 0 proceed as follows.
If 2™i-1 > 2|a;| we have two cases:
if o;_1a; >0 thenlet v; = m;_1 and V; = M;_1 +1
else, if Ti—10; < 0, let Vi =Mij_1 — 1 and ‘/z = Mi—l-
On the other hand, if 2™-1 < 2|a,|,
compute the exact value of p;_1 using Lemma 1 with
T = 2Mia + 1 and let s; = p;_1 + a4.
If 5, =0, let o; = 0.
If s; # 0 then
compute £ such that 2¢ < |s;| < 2¢+! and let
v =4, V; =€+1 and o; = sign(s;).

It is immediate to check that, if m;_1, M;_1 and o;_1 satisfy conditions (1) and (2),
then v;,V; and o; satisfy conditions (3) and (4). All lines in the above algorithm are
executed in polynomial time. This is immediate except for the computation of the exact
value of p;. But the algorithm in Lemma 1 has a halting time bounded by a polynomial
in size(P) and size(T") for any P computing p;(x). In our case one can take any straight-
line program computing p; of size polynomial in the size of f (Horner’s rule as described
above provides one with 2i — 1 operations) and we note that the size of T, is about M;_1,

Polynomial Time Algorithm 25

and
M;_1 <mi—1+3(—1) <log(2|a;]) +3(: — 1)
which is also polynomial in size(f).
For (b), we proceed as follows.

Compute £ such that 2¢-1 < g% < 2641 35 in Lemma 2.
Ifo; #0thenlet m; =v; +€—1and M; =V, + £+ 1.

Notice that in (a) we do not use the values of m;_y and M;_; if o; = 0. Consequently,
we do not compute them in (b) if this is the case. O

REMARK 1. It is an open problem whether one can compute the sign of f(z) in poly-
nomial time if f is given as a straight-line program. This is so even allowing the use of
randomization, in which case the state of the art is an algorithm for deciding whether
f(z) = 0 in randomized (one-side error) polynomial time (see Schwartz (1980)). This
algorithm, however, does not tell, in case f(z) # 0, whether f(z) > 0 or f(z) < 0.

3. Proof of Theorem 1

First we give a preliminary lemma. It is a well known result (cf. Mignotte (1992, Ch.
5.3)) but we prove it here for sake of completeness. In the following we count roots
without multiplicity, that is, the expression “k roots” means k different roots.

LeMMA 3. Let f € R[t] have k monomials. Then f has at most 2k real roots.

ProoF. If k = 1 the statement is true. If k£ > 1 write f = z%p with p(0) # 0. Then p/,
the derivative of p, has k — 1 monomials and, by induction hypothesis, at most 2(k — 1)
roots. From this we deduce, by Rolle’s theorem, that p has at most 2k — 1 real roots and
hence f has at most 2k. O

DEFINITION 1. Let p € Z[t] and M € Z, M > 0. Let C = {[u;,v;]}i=1,..,~ be a list of
closed intervals with integer endpoints satistying u; < u;;1 and v; = u; or v; = u; + 1 for
all i. We say that C locates the roots of p in [—M, M] if for each root ¢ of p in [—M, M]
there is ¢ < N such that ¢ € [u;,v;]. Note that in this case p has no roots in (v;, u;41)
for all 1.

Let g € Z[t] and M € Z, M > 0. Write g = t*p with p(0) # 0 and suppose that
C" = {{uq,vi]}i=1,..., v locates the roots of p’ in [—M, M]. Then, for each i < N, p has at
most one root in the interval (v;, u;41) since, by Rolle’s theorem, if p has two roots in
(vi, ui+1) the p’ must have a root in this interval as well.

Moreover, p has a root in this interval iff p(v;)p(u;41)<0. This is so since if p(v;)p(vi41)
> 0 and p has some root in (v;,u;41) then either p has (at least) two roots in [v;, w;11]
or it has a double root in (v;, u;41). In both cases p’ has a root in (v;, u;11) contradicting
the choice of C'.

PROPOSITION 1. There is an algorithm which, given input g,p € Z[t], M,N and C' as
above computes ¢ list C locating the roots of p in [—M, M|. The listC has at most N + 2k

26 F. Cucker et al.

intervals where k is the number of monomials of g. The halting time of the algorithm is
polynomially bounded in size(M), size(g) and N.

Proor. Using the algorithm of Theorem 2 compute the sign of p at the points — M, uy, vy,
...,uN,vN,M.

Let [z,y] be any of the N + 1 intervals [—M, w], [v1,u2],. .., [vN—1, un], [vn, M]. If
p(x)p(y) > 0 we know that there are no real roots of p in [x,y]. Otherwise, there is only
one root which can be located in an interval of the form [u,u+1] by applying the classical
bisection algorithm with integer mid-points (the interval has the form [u, u] if we find a
mid-point u such that p(u) = 0). We form C by adding to C’ these intervals.

Since the total number of roots of p is bounded by 2k it follows that the number of
intervals in C is at most N + 2k.

The bound for the halting time is proved as follows. Bisection is applied to N + 1
intervals at most. Fach of these intervals has length at most 2M and therefore, the number
of sign evaluations is of the order of log M, that is, it is linear in size(M). Finally, all
the sign evaluations (the 2(IV + 1) first ones and the ones performed during the bisection
process) are done in polynomial time in size(M) and size(g) by Theorem 2. O

PROOF OF THEOREM 1. Let

f= altﬁl 4. +akt5’“

with 8y > B2 > --- > B > 0. Then, we can define polynomials p; inductively by

fF=t"pm p1(0) # 0 and p; has k monomials
pl = tT-1py p2(0) # 0 and pg has k — 1 monomials
D1 =t pr Pk €Z, pp #0

where v, = (B and 71,...,7Yx—1 only depend on S, ..., Gk.
If L is a bound for the absolute value of the coefficients of f, the coefficients of p; are

bounded by Lﬁ{_l for j =1,..., k. Therefore, since p; has exactly k — j + 1 coefficients,
we deduce that

size(p;) < (k— 7+ 1)(j — 1) size(B1) + size(f)

which is bounded by 2(size(f))3 forall j = 1,... k.
Now we note that if ¢ is an integer root of f, then either { = 0 or ¢ divides ax. To
prove this, suppose that f({) =0 and ¢ # 0. Then we have

a1<51—5k NI ak_lcﬁk—l—ﬁk = —ay.

Since ¢ divides the left-hand side, it must divide ag.

Thus, all integer roots of f are in the interval [—|ag]|,|ax|] and we can restrict our
search to this interval.

Consider the algorithm

Polynomial Time Algorithm 27

input f
Compute p1,. .., Pk
Let €, = [0,0].

Fori=%k—1,...,1, inductively
compute C; locating the roots of p; in [—|ax|, |ax|]
using Proposition 1 with input C;1.

Let S = 0.

For each endpoint z of an interval in Cq,
if f(x) =0thenlet S =SU{z}.

Output S

The list Cy, isolates the roots of pi. Then, by k — 1 applications of Proposition 1, the
list C; isolates the roots of p; and since it contains the interval [0, 0], the roots of f. This
ensures the correctness of the algorithm.

The polynomial bound for the halting time follows from Proposition 1 plus the fact
that size(p;) < 2(size(f))® for all j = 1,..., k. Notice that p;41 is computed from p; by
first computing the derivative p, — which is done with 2(k —) arithmetic operations
— and then dividing by a power of ¢ — which is done with k — ¢ arithmetic operations.
Thus, the sequence py, ..., px can be computed with O(k?) arithmetic operations. Since
all the operand have polynomial size in size(f), the sequence is computed in polynomial
time. O

4. A Refinement

Let f = Z?:o a;t* be an integer polynomial with ap < 7 < -+ < @y and all g;’s
nonzero. Given k € {1,...,n — 1}, one can write uniquely f as f = ry + x®*+1¢; where
ry and ¢, are integer polynomials, and deg(ry) = ay (of course, 1, = Zf:o a;t% and
qr = Z?:k 41 @it %), With this notation, we have the following simple known fact.

PROPOSITION 2. Let My = supg<;<y, |a;|. If = is an integer root of f and |z| > 2, x must
also be a root of qi, and vy provided that a1 — oy > 1+ log M.

PROOF. Since z is a root of f, |ri(x)| = |gx(z)] - |z|**+*. Moreover,
|x|1+ak -1
()] < MiL fol 4+ ol) = My

From these two relations we obtain
lgr ()| - |z|* 17 < Myla|/(|z] — 1) < 2Mj

since |z| > 2. Finally, gr(x) # 0 implies (ax+1 — ax) log|z| < 1+log My, since |gr(z)| > 1
in this case. This is in contradiction with the hypothesis apy1 — ar > 1 + log M. We
conclude that g (z) = 0, and ri(z) = 0 follows immediately. O

This proposition applies in particular to polynomials that have a small number of
terms compared to their degree (of course these are precisely the polynomials for which
the sparse representation is interesting). Specifically, if f is a polynomial of degree d = a,
with a nonzero constant coefficient (i.e. g # 0) and M = M, = supg<;<y, |¢:], there must

28 F. Cucker et al.

exist a gap of at least d/n between two consecutive powers of f. Therefore one can always
apply this proposition when % >141logM.

In any case, if the proposition applies we can first compute the integer roots of ry
(or gx) and then check whether any of these roots is also a root of ¢ (or 7). This
can sometimes speed up the algorithm described in the previous sections, in particular
when either g or 7y is of small size compared to f. For instance, if f is of the form
f(z) = 2% — 3+ 25¢(x), only —1 and 1 can possibly be integer roots of f. And if f is of
the form f(z) = 22 — 9+ z7¢(z), all integer roots are in {—3,—1,1,3}.

5. Final Remarks

Natural extensions of Theorem 1 would consider the existence of rational or real roots
of f. For rational roots, the arguments in Section 3 can be extended. If a rational p/q is
a root of f then p divides the constant term and ¢ divides the leading coefficient. Thus,
the number of possible roots is again exponential in size(f) and the bisection method
applies. However, it is an open question whether one can compute the sign of f(p/q) in
polynomial time. For real roots the situation seems even more difficult since bisection
only may not detect multiple roots.

In another direction, one could consider diophantine equations in several variables.
For sparse polynomials in several variables, sign determination seems to be a difficult
question, and it is not clear whether Theorem 2 can be generalized. Actually, right now
it is not known whether any algorithm exists to decide diophantine equations in two
variables.

Recall that the (logarithmic) height of an integer z is defined by ht(z) = log(1 + |z|).

Let f € Z[t1,...,ta], f = D ca @at® with A a finite subset of N", a, # 0 for o € 4,
and t* = ¢ - t9 f @ = (o, ..., an). The sparse representation of f is the sequence
of pairs (, a), and the size of f for this representation is defined by

size(f) =) (ht(a) + ht(a,))

acA

where ht(a) = ht(aq) + - - - + ht(a,).
It is well known that f can be evaluated at a point x € Z" in time polynomial in
size(f) and size(x) if f is considered with the dense representation.

PROBLEM 1. Given f € Z[t1,...,t,] and z € Z", is it possible to compute sign(f(z)) in
polynomial time in size(z) and size(f) for the sparse representation of f7

Theorem 2 solves this problem for the case n = 1. For any fixed n, Shub (1993) solves
it using Baker’s (1975) theorem in case f has only two monomials (but the halting time
depends exponentially in n). Moreover he poses a question akin to Problem 1.

Worse, the problem of deciding feasibility of diophantine equations in many variables
is well-known to be undecidable (cf. Matiyasevich (1993)). Thus we consider the two-
variable case. Since this problem looks much harder than in one variable, we would be
happy with a single exponential algorithm for dense polynomials. If f € Z[ty,...,t,] has
degree d € N, the dense representation of f is the sequence of coefficients {a,} for all
o € N® with || = a1 + - -+ + an < d. The sequence is ordered by lexicographic ordering

Polynomial Time Algorithm 29

in N™. Then, the size of the dense representation of f is

size(f) = Z size(aq).

lal<d

Here size(a) = ht(a) if o # 0 and size(0) = 1.
‘We propose the following conjecture.

CONJECTURE 1. The feasibility of any diophantine equation P(z,y) = 0 can be decided
in time 2€° where C' is a universal constant and s is the size of P for the dense repre-
sentation.

This would follow from certain height estimates. Height bounds are a topic of current
interest in number theory, but there are more conjectures than theorems. For instance, the
Lang-Stark conjecture (Lang, 1991) proposes the upper bound |z| < Cmax(|a|?,|b|?)*
(C and k are universal constants) on the height of all solutions of equations of the form
y? = 2% + ax + b with 443 + 2762 # 0. Here we only need a bound on the smallest height
of a solution, though.

References

Akritas, A. (1989). Elements of Computer Algebra with Applications. New York, John Wiley & Sons.

Baker, A. (1975). Transcendental Number Theory. Cambridge, Cambridge University Press.

Brent, R. (1976). Fast multiple-precision evaluation of elementary functions. J. ACM, 23, 242-251.

Lang, S. (1991). Number Theory III, Volume 60 of Encyclopaedia of Mathematical Sciences. Berlin,
Springer.

Matiyasevich, Y. (1993). Hilbert’s Tenth Problem. Cambridge, MA, The MIT Press.

Mignotte, M. (1992). Mathematics for Computer Algebra. Berlin, Springer.

Schwartz, J. (1980). Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27,
701-717.

Shub, M. (1993). Some remarks on Bezout’s theorem and complexity theory. In Hirsch, M., Marsden, J.
and Shub, M., eds. From Topology to Computation: Proceedings of the Smalefest, pp. 443—455.
Berlin, Springer.

Originally Received 30 October 1997
Accepted 30 July 1998

