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Series preface

Biophysics encompasses the application of the principles, tools, and techniques of the physical sciences to 
problems in biology, including determination and analysis of structures, energetics, dynamics, and inter­
actions of biological molecules. Biochemistry addresses the mechanisms underlying the complex reactions 
driving life, from enzyme catalysis and regulation to the structure and function of molecules. Research in 
these two areas is having a huge impact in pharmaceutical sciences and medicine.

These two highly interconnected fields are the focus of this book series. It covers both the use of tradi­
tional tools from physical chemistry such as nuclear magnetic resonance (NMR), x-ray crystallography, and 
neutron diffraction, as well as novel techniques including scanning probe microscopy, laser tweezers, ultrafast 
laser spectroscopy, and computational approaches. A major goal of this series is to facilitate interdisciplinary 
research by training biologists and biochemists in quantitative aspects of modern biomedical research, and 
teaching core biological principles to students in physical sciences and engineering.

Proposals for new volumes in the series may be directed to Lou M Chosen, Executive Editor (lou.chosen@
taylorandfrancis.com).

emailto:lou.chosen@taylorandfrancis.com
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Foreword

It is becoming increasingly clear that the immune system is critically important for maintaining health and 
is implicated in mediating various states of disease. The desire to combat infectious diseases since antiquity, 
the more recent interest in deploying the immune system to combat cancer, the untold amount of suffering 
caused by autoimmune diseases, and the desire to understand how the remarkable immune system works 
has led to a great deal of experimental and clinical research aimed toward understanding how immunity 
is regulated. Some spectacular discoveries have been made over the years. In spite of these major advances, 
our understanding of how a systemic immune response develops, and how it can be mis-regulated to cause 
diverse diseases remains incomplete. The ability to collect large amounts of data in a high throughput manner 
combined with computational inference of patterns in this data, mechanistic modeling to generate appropri-
ate hypotheses to explain these patterns, and experimental/clinical tests of these hypotheses is beginning to 
change this situation. This convergence of approaches and people from different disciplines may lead us to 
a future where a person’s immune health can be monitored, corrected when it goes awry, and manipulated 
for therapeutic and prophylactic purposes with precision. This edited book reviews progress in some aspects 
of ongoing work pertinent to this goal. The first chapter by Salvatore Valitutti and co-workers aims to intro-
duce the basics of how the immune system works to individuals not trained as biologists. There is also an 
interesting chapter by Steven R. Abel that summarizes the various approaches that are being pursued to con-
struct theoretical and computational models of processes pertinent to the immune system across a range of 
spatio-temporal scales. Other chapters discuss topics that cover a wide range that includes statistical analyses 
methods, rule-based modeling of immune cell signaling, characterizing vulnerabilities of mutable viruses 
to immune attack, importance of spatial heterogeneities in regulating immune responses across scales, the 
key challenges that remain in understanding immune synapses, etc. Taken together, the body of information 
contained in this book provides readers with a bird’s-eye view of different aspects of exciting work at the con-
vergence of disciplines that will ultimately lead to a future where we understand how immunity is regulated, 
and how we can harness this knowledge toward practical ends that reduce human suffering. I commend the 
editors for putting this volume together.

Arup K. Chakraborty
MIT
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Preface

I have done this to illustrate that the approach being used is not meaningless speculation but has 
real possibilities of suggesting experiments that may lead to its modification or rejection.

Frank M. Burnet
Nobel lecture, 1960

The discipline of immunology has undergone transformative changes in the last few decades. Driven by 
intense research efforts aimed at combating infectious diseases such as HIV infection and by technological 
advances in experimental approaches our knowledge of the immune system now spans from the scales of 
single molecules to human communities. To put the above range of scales in a perspective, a similar range in 
length scale relates the size of a human to the average distance of Saturn from the Sun. The major challenges 
in immunology are usually multiscale problems where dynamical processes occurring on such a wide range 
of scales interact with each other to generate responses that affect our health. Take the example of the pro-
gression of an epidemic where interactions between viral peptides and immune receptors in the microscale 
propagate to larger scales infecting individuals and then human communities residing in many geographical 
regions. The complexity and the multi-scale nature of the immune system have necessitated the use of sophis-
ticated modeling and theoretical techniques to construct mechanistic and data-driven models and then use 
the models to make predictions and design experiments or hypotheses. Techniques from physical and engi-
neering sciences, in particular physics, have been proven valuable for building such models. Some of these 
models have led to the development of life saving clinical strategies besides providing basic understanding 
of the underlying biochemical processes. This interdisciplinary effort has led to a small but steadily growing 
field loosely designated as computational immunology or systems immunology.

However, it is still difficult for a researcher with a background in physical sciences or immunology to 
readily start working in this interdisciplinary area. On the one hand, a researcher from physical sciences 
is often overwhelmed by the vast immunology literature; on the other hand, biologists are intimidated by 
mathematical jargon and seemingly complicated computational methods. Another common difficulty is that 
even a well-trained Ph. D. in the physical and mathematical sciences will not know all of the different math-
ematical techniques required in modeling immunology. Some of these issues are dealt with in review articles 
published in professional journals; however, these reviews often have a very narrow focus depending on the 
target audience of the specific journal and fail to provide a holistic picture of the entire field. Thus, there is an 
acute need for a book that can be used by physical scientists or biologists who are interested in using quantita-
tive methods to develop predictive mechanistic models in immunology.

This book is designed to address some of the above problems and provide a solid foundation for students 
and researchers in physical and biological sciences who would like to start working in the interdisciplinary 
field of systems or computational immunology. The nineteen chapters, written by leading experts in the field, 
cover a wide range of computational and mathematical methods employed in mechanistic and data driven 
modeling of immune responses at the scales of single cells to organs to individual organisms to populations. 
In addition, a basic introduction to the immune system is provided to help a newcomer get started. The chap-
ters on fundamentals of statistical data analysis, and, on the approximations and assumptions that are usually 
made in mechanistic modeling should help students critically assess models presented in the literature where 
such discussions are often omitted.

Graduate students and advanced undergraduate students in physics, biophysics, chemistry, applied mathe-
matics, chemical engineering, bioengineering, systems biology, ecology, molecular biology, and immunology 
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departments will find this book useful as a textbook for courses pertaining to quantitative methods in immu-
nology or biology. We hope the book will also serve as a useful introduction for modeling approaches to 
researchers with physical sciences or biology background.

We appreciate the time and effort of the authors who made room in their busy schedules to contribute to 
this effort. The book would not have been possible without the valuable help from Rhonda Purcell and Gail 
White, who assisted us with organizing the chapters and coordination between the contributors, the editors, 
and the publisher.

Jayajit Das
Ciriyam Jayaprakash

MATLAB® is a registered trademark of The MathWorks, Inc. For product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

emailto:info@mathworks.com
http://www.mathworks.com
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2  Introduction to basic concepts in immunology

1.1 � SUMMARY

The immune system is a complex network of cells and soluble mediators that evolved to defend its host organ-
ism from pathogenic microbes. Since immune responses are endowed with high complexity and plasticity, 
the understanding of complex immunological networks can strongly benefit from the interdisciplinary work 
of physicists, applied mathematicians, and experimental immunologist. For successful interdisciplinary col-
laboration, it is of primary importance that basic concepts are shared in a simplified fashion. In this chapter, 
we outline some basic concepts to introduce immunology to non-biologists. We provide fundamental knowl-
edge and nomenclature, which is essential to understand the complexity of immunological networks. For a 
more complete understanding of immunology, the readers can refer to excellent reference texts (Abbas et al., 
2015; Murphy et al., 2012; Paul, 2012). We detail T cell antigen recognition and cytotoxic T lymphocyte (CTL) 
function more than other aspects of immunology. These topics are chosen as examples to illustrate the com-
plexity of the molecular and cellular interactions taking place in the immune system.

1.2 � INTRODUCTION

1.2.1 � General view of the immune system

The immune response is based on interactive networks of numerous cellular and molecular effectors that 
evolved to protect a host against infections, to control tumor growth, as well as to maintain the homeostasis 
of tissues.

1.2.1.1 � CELLS

Development of cells of the immune system starts in the bone marrow from a common precursor cell (called 
pluripotent hematopoietic stem cell) that then differentiates into more specialized cells to form a heteroge-
neous group of immune cells called leukocytes, or white blood cells (Figure 1.1).

1.2.1.2 � CYTOKINES AND CHEMOKINES

Cytokines and chemokines are essential components of the immune system. They can be considered “molecu-
lar messengers” that cells of the immune system exchange among each other. More than one hundred differ-
ent cytokines have been identified so far. Cytokines are secreted in the extracellular milieu or are bound on 
the surface of the cell. They are responsible for complex intercellular communication since each cytokine can 
be produced by more than one type of cell and acts on different cells of the immune system (remarkably, each 
cytokine can exert different effects on different cells). Different types of cytokines include: tumor necrosis 
factor-α (TNF-α), interferons (IFN-α, IFN-β, and IFN-γ), interleukins (IL-1, IL-2, IL-3, etc.), and chemokines. 
All cytokines accomplish their functional role by binding to specific receptors expressed on the surface of 
a cell. Some cytokines, such as TNF-α and interferons, have the role of alerting the immune system and of 
promoting immune responses. Others, such as TGF-β and IL-10, are instead inhibitory cytokines and sup-
press immune responses.

The chemokines are a family of small cytokines involved in chemotaxis (directed movement) of cells. 
Chemokines are therefore chemotactic cytokines. The main role of chemokines is to guide the migration of 
immune system cells so they may reach the organs or tissues where their function is required.

1.6.3	 Efficacy of CTL	 20

1.6.4	 CTL/Tumor cell interaction	 20

1.7	 Of mice and men: Key issues that remain to be elucidated	 21

1.8	 Concluding remarks	 21

References	 22
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4  Introduction to basic concepts in immunology

1.2.2 �T he innate immune response

Studies over the past three to four decades characterize the immune system as consisting of two main cat-
egories: innate immunity and adaptive immunity. Although these two components of the immune response 
mainly differ in terms of specificity, rapidity, duration, and biological functions, they are complementary and 
deeply interconnected.

Innate immunity plays an essential role in the immediate defense of the host organism. It allows the 
discrimination of self/nonself by a system that consists of soluble proteins and relatively invariant cellular 
receptors. By self, immunologists mean the molecular patterns that the immune system has learned to recog-
nize as components of the host organism. The immune system does not react against these components. This 
phenomenon is named immunological tolerance. By nonself, immunologists mean the molecular structures 
that do not belong to the host organism and that therefore trigger immune responses when penetrating the 
organism.

Innate immunity is composed of three layers of defense: (1) the physical barriers composed of epithelial 
cells and antimicrobial agents; (2) cells such as neutrophils, macrophages, and dendritic cells (DC), which 
uptake pathogens and cell fragments and release antimicrobial agents, and natural killer cells (NK), which 
kill virus-infected cells; and (3) plasma proteins, including cytokines, chemokines, and the complement 
system.

It is important to note that macrophages and DC do not only intervene in early steps of innate immune 
responses but also present antigenic ligands to T lymphocytes, therefore acting as a bridge between innate 
and adaptive immune responses (see the legend to Figure 1.2). Other cells that are implicated in the initial 
protection against pathogens and that play a functional role at the interface between innate and adaptive 
immune responses are basophils, eosinophils, mast cells, and innate lymphoid cells (ILC) as well as some 
subpopulations of lymphocytes including B-1 B cells, natural killer T cells (NKT), and γδT cells.

Cells that are part of the innate immunity category reside in various parts of the body and are in particular 
located at potential entry sites of pathogens, such as skin and mucous membranes, where they are ready to 
rapidly respond upon recognition of danger signals. The danger signals are common structural patterns of 
microbes (pathogen-associated molecular patterns, PAMP) or endogenous byproducts of damaged or dying 
cells (damage-associated molecular patterns, DAMP); these patterns are recognized by evolutionary con-
served receptors named pattern recognition receptors (PRR). Among these receptors, an important family is 
represented by the Toll-like receptors (TLRs) that are expressed by various cells of the immune system.

A peculiar characteristic of the innate immune cells is that they rapidly respond against pathogens, but 
they do not “learn” from previous encounters with a given pathogen and therefore respond evenly to repeated 
exposure to an infectious agent.

A typical innate immune response is depicted in Figure 1.2. The legend of Figure 1.2 summarizes, in a 
schematic fashion, the cascade of cellular and molecular steps constituting innate immune responses.

1.2.3 �T he adaptive immune response

Adaptive immunity is characterized by the proliferation and differentiation of specific cells called lympho-
cytes that recognize antigens. The main feature of adaptive immune responses is the usage of antigen specific 
receptors expressed by the two main subsets of lymphocytes, the B and T lymphocytes. Pathogens, infected 
cells, and tumor cells express on their surface antigens that are recognized by B and T lymphocytes. An 
antigen is defined as a molecule that is recognized by the adaptive immune system. More precisely, the recep-
tors expressed by B and T lymphocytes recognize, with high specificity, a small molecular structure named 
epitope within the antigen. A pathogen, such as bacteria, can therefore be seen as a mosaic of antigens (each 
antigen is made of various epitopes) that triggers different B and T lymphocytes, each one expressing on their 
surface approximately 30,000-50,000 identical antigenreceptors that are specific for a given epitope.

Adaptive immunity takes longer to get involved when compared to innate immunity and constitutes the 
second line of the host organism’s defense. Although adaptive immunity requires several days or weeks to 
develop, it can eventually elicit the specific elimination of antigens, infected cells, and cancerous cells. It is 
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called adaptive since this type of immunity is capable of generating memory. Thus, repeated exposure to the 
same antigen leads to more vigorous and rapid responses and provides long-lasting protection.

The adaptive responses are based on two components: (1) Humoral immunity, mediated by B lympho-
cytes (also named B cells) that produce and secrete molecules called immunoglobulins (Ig) or antibodies and 
(2) Cellular immunity, mediated by the T lymphocytes (or T cells). T lymphocytes are divided in two major 
subsets: T helper (Th) cells that coordinate the action of other cells of the immune system and cytotoxic T cells 
(CTL) that destroy infected or cancerous cells.

Before the entry of an antigen in the host organism, there are very few B and T cells that are called naive 
cells due to their lack of encounter with antigen. Upon antigenic stimulation these cells are activated and 
proliferate to generate a progeny of activated cells. Therefore, both humoral and cellular adaptive immune 
responses require several days or weeks to develop. This time is required to allow both B and T lymphocytes to 
proliferate in order to increase their number and to differentiate into effector cells able to eliminate pathogens 
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Figure 1.2  Schematic description of an innate immune response and of its relation with the initiation of the 
adaptive immune response. When epithelial barriers fail to block microorganisms, pathogen entrance and 
replication activates the innate immune system. (1) The first line of defense is composed of tissue macro-
phages that engulf microorganisms and destroy them through recognition of pathogen-associated patterns 
via their receptors. Pathogen clearance is either mediated through the fusion of the phagosome with lyso-
somes that contain antimicrobial compounds or through the generation of oxygen radicals via a “respiratory 
burst.” (2) Activated macrophages are also capable of secreting cytokines and chemokines, causing inflam-
mation and recruitment of other immune cells. (3) Such inflammatory responses increase the local blood flow, 
reduce blood flow velocity, and induce up-regulation of adhesion molecules on activated endothelial cells 
with consequent extravasation of circulating leukocytes into the infected tissues. (4) Neutrophils are the first to 
arrive to the site of infection followed by monocytes. Monocyte differentiation leads to the generation of addi-
tional macrophages ready for in innate response. (5) During viral infection, NK cells play an important role in 
providing a primary defense by releasing lytic molecules when contacting target cells. (6) The further comple-
ment system is activated by microbial products, contributing to the creation of an inflammatory environment. 
Inflammatory responses also increase the flow of antigens from infected tissues to draining lymph nodes, a 
mechanism that will help to mount an adaptive immune response. At this stage, innate immunity might suc-
ceed in infection removal. Alternatively, infection might be kept under control to prevent dissemination, while 
adaptive immune response develops to provide a stronger level of defense. (7) Dendritic cells are key effectors 
in the development of adaptive responses. They capture antigens in tissues, migrate to draining lymph nodes, 
and present antigens to naive T cells in order to activate adaptive immunity.
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(Figure 1.3). The capacity of lymphocytes specific to a given antigen to proliferate after stimulation is named 
clonal expansion. Through this process, the number of antigen-specific B or T cells increases to create a large 
cohort of cells that are then able to cope with rapidly replicating microbes. Remarkably, in some immune 
responses the number of T cells specific to a given antigen can increase up to 50,000 fold.

1.2.4 � B lymphocytes

1.2.4.1 � B CELL DEVELOPMENT AND FUNCTION

B cell maturation occurs via a series of molecular and cellular events taking place in the bone marrow. This 
process allows a progenitor of a B cell to proceed along the steps to maturation and results in a mature B cell 
that expresses a B cell receptor (BCR). The BCR is an Ig or antibody expressed on the B cells surface where it is 
associated with molecules involved in signal transduction. Antibodies are multimeric proteins composed of 
two heavy chains and two light chains joined to form a “Y” shaped molecule (see scheme in Figure 1.4). Each 
of the two short arms of the Y is formed by the juxtaposition of one light chain with one heavy chain. They are 
identical and bind two identical epitopes. The long arm binds other proteins or cellular receptors and confers 
the biological function to the antibody. There are five main classes or isotypes of antibodies that differ in their 
heavy chain and function: IgM, IgD, IgG, IgA, and IgE. During the various steps of differentiation in the bone 
marrow, precursor cells mature to the stage of naive B cells that express both IgM and IgD on their surface. 
The encounter with a specific antigen will lead to the activation of these naive B cells that will then start to  
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Figure 1.3  Development of an adaptive immune response. The adaptive immune response is made of vari-
ous phases: antigen recognition, lymphocyte activation, antigen elimination, contraction, and memory. The 
duration of the different phases can change in the different immune responses. This scheme applies to both 
humoral and cell-mediated immunity.
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express on their surface antibodies belonging to the other Ig classes (IgG, IgA, and IgE) and will also start to 
release those antibodies in the extracellular milieu.

Antibodies of different isotypes have different functions. As mentioned above, the different functions are 
conferred to the antibody by the constant portion of the heavy chain. For example, IgMs play a major role 
at the beginning of the immune response and are able to activate the complement system (a number of small 
proteins that, when activated, contribute to the amplification of the immune response), while IgGs intervene 
later in the immune response and are the main virus and toxin neutralizing antibodies in the blood. Another 
example is the IgA that can be transported through the epithelial cells of gut, airways, and other mucous 
membranes. They are, therefore, the antibodies present in tears, saliva, mucous, etc.

1.2.4.2 � BCR STRUCTURE

Specific antigen recognition by B lymphocytes is mediated by BCRs or membrane bound immunoglobu-
lins. BCRs recognize unprocessed antigens in soluble form or bound to cell surface. BCRs do not possess an 
intrinsic signaling function. On the surface of a B cell, each BCR is associated with a heterodimer of proteins 
belonging to the immunoglobulin superfamily: Igα and Igβ. These proteins bear a cytoplasmic tail containing 
the ITAM motifs (Immunoreceptor Tyrosine-based Activation Motifs, YxxL/I-X-6-8-YxxL/I) that are respon-
sible for signal transduction (Figure 1.4).

1.2.4.3 � B CELL ACTIVATION

BCR interaction with antigens causes BCR internalization. This allows B cells to process captured antigens 
within their lysosomal or late endosomal compartments and to express on their surface antigenic peptides 
bound to major histocompatibility complex (MHC, see below) molecules for antigen presentation to a specific 
type of T lymphocytes: the helper T (Th) lymphocytes. This event establishes a cascade of signaling processes 
that lead to the activation of B cells. Helper T cells induce robust proliferation of the specific naive B cells 
(clonal expansion) and direct their differentiation into antibody-secreting plasma cells or memory B cells. 
During this differentiation phase, B cells ameliorate their capacity to recognize the antigens. A key antigen 
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Figure 1.4  Structure of B cell receptor (BCR). Cell bound antibodies are composed of two identical light 
chains (indicated by subscript L) and two identical heavy chains (indicated by subscript H). Each of these chains 
is composed of a variable region (V), determining the specificity of the antibody for the antigen, and of a con-
stant region (C), defining the functional properties of the antibody or immunoglobulin. Each BCR is associated 
with a heterodimer of immunoglobulin superfamily proteins: Igα and Igβ. The terms BCR, antibody, and immu-
noglobulin can be considered as synonyms, keeping in mind that BCR is the cell bound form of an antibody.
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binding property of the BCR (that is, the BCR affinity for the antigen) is enhanced via a mutation/selection 
process named somatic hypermutation. Cytokines released by Th cells determine the antibody isotype that 
better fits the ongoing immune response (isotype switch). Once activated, B cells become antibody producing 
cells and release into the extracellular milieu antibodies that have an affinity for the antigen and an isotype 
that reflect those exhibited by the BCR mounted on the B cell surface. As a consequence, with the ongoing 
immune response, B cells release antibodies exhibiting increasing affinities for their antigens. The main pur-
pose of vaccinations is to stimulate B cells repetitively in order to allow them to produce and release antibod-
ies of “better quality.”

The biological functions of antibodies are various. A main function of the antibodies is to block (that is, 
neutralize) the antigen. The neutralizing capacity of an antibody is strictly dependent on its affinity for the 
antigen. This function is crucial to neutralize toxins released by bacteria (such as tetanus toxin, pertussis 
toxin, and more) and to neutralize viruses in order to impede their entry in target cells (poliomyelitis virus, 
measles virus, and others).

1.3 � T LYMPHOCYTES

In this and in the following sections, we provide a more detailed description of the biology of T lymphocytes 
since these cells are the central players in adaptive immune responses. They have a broad range of functions 
that include the activation and control of several other cells of the immune system. We believe that under-
standing the complexity of T cell functional interactions with other cells can be useful for mathematicians 
and physicists and can allow them to become familiar with the complexity of the immune system.

1.3.1 �O verview of T lymphocyte activation

A T lymphocyte activation requires a sequence of events. The foreign antigen is captured and processed by anti-
gen presenting cells (APCs) such as dendritic cells. Antigen fragments are transported to the cell surface in order 
to be recognized by specific pre-existing T lymphocytes that harbor the complementary receptor for that given 
antigen (T cell antigen receptor, or TCR). TCRs are highly specific and each T lymphocyte normally carries only 
a single form of TCR. Antigen recognition together with signals provided by accessory molecules named the co-
stimulation molecules (CD80/86 on APC and CD28 on T lymphocytes) will lead to the activation of the selected 
T lymphocytes that will then undergo vigorous rounds of division (clonal expansion). Antigen presentation to 
T lymphocytes is a complex process that can be considered the key event in the development of an adaptive 
immune response and is described more in detail below. It is important to know that T lymphocytes are unable 
to recognize antigens in their original form. Antigens must be processed and degraded in intracellular compart-
ments and then expressed on the cell surface associated to specialized molecules belonging to the MHC. These 
molecules have the function of binding fragments of antigens (named antigenic peptides) and to “present” them 
to the TCR. In other words, TCR binding to an antigen can only occur when the antigen is processed and a por-
tion of it is bound to an MHC molecule of the host organism. This complex mechanism provides T lymphocytes 
with a dual specificity: one for the antigenic peptide and one for the MHC molecules (Figure 1.5).

1.3.2 �T  lymphocyte subsets

T lymphocytes that express the αβ TCR constitute the majority of T lymphocytes population ανδ αρε called 
αβ T lymphocytes. As result of gene rearrangements during their development, individual T lymphocytes 
expresses a unique TCR, responding to a specific antigen-derived peptide.

T lymphocytes are divided into two main subsets: the CD4+ T helper T (Th) lymphocytes and the CD8+ 
cytotoxic T lymphocytes. Helper T lymphocytes are divided into several functional subsets including Th1 
cells, Th2 cells, Th17 cells, follicular Th (Tfh) cells, and a heterogeneous group of regulatory T cells (Treg). Thus, 
the current picture of αβ T cell biology postulates that T lymphocytes are a very diverse family of cell subsets. 
Table 1.1 summarizes some phenotypic and functional characteristics of these cell subsets.
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CD80/86        CD28

pMHC       TCR

Dendritic cell T lymphocyte

Figure 1.5  A schematic representation of T cell/APC interaction and antigen recognition. The initial encoun-
ter of between naive T cells and DCs occurs in secondary organs such as lymph nodes. Activated T lympho-
cytes will then differentiate into effector cells. During the activation phase, T lymphocytes down-regulate 
the expression of adhesion molecules and chemokine receptors that retain them in the lymph nodes and in 
the mean time they acquire receptors that allow their traffic towards the peripheral tissue were their func-
tion is requested. T cell response then declines (contraction phase) due to death of antigen specific effector 
T lymphocytes. At the end of the response a fraction of the antigen specific T cells will remain alive and will 
constitute a reservoir of memory T cells, ready to be re-activated by a second round of antigenic stimulation 
(see Figure 1.3).

Table 1.1  Example of various T cell subsets

T cell 

subset Specific markers

Cytokine 

expressed Some of their function

Th1 CD4

T-bet

STAT1

IFN γ Activates macrophages phagocytosis

Enhance antibody-mediated opsonization

Helps CTL activation

Inhibits Th2 differentiation

Th2 CD4

GATA3

STAT6

IL-4

IL-5

IL-13

Activates antibody secretion by B cells

Enhances mast cells chemotaxis and function

Activates Eosinophils

Inhibits Th1 differentiation

Treg CD4

FOXP3

IL-10

TGF-β
IL-35

Inhibits Th1/Th2 differentiation

Inhibits effector T cell function

Promotes immune tolerance

Maintains lymphocytes homeostasis

Tfh CD4

BCL-6

CXCR-5

IL-4

IL-21

Helps B cells for humoral immunity

Th22 CD4

AhR

IL-22 T cell proliferation

Tissue inflammation

Elimination of extracellular parasites

Th17 CD4

RORγO

STAT3

IL-17A

IL-17F

IL-22

Neutrophil recruitment

Induce antimicrobial peptide production

Th9 CD4

PU.1

IL-9 Mucosal immunity, autoimmunity, and cancer

CTL CD8

T-bet

EOMES

IFN γ
TNF α

Cell mediated cytotoxicity
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1.3.3 �T  lymphocyte development and maturation

T cell development takes place in the thymus, a lymphoid organ located behind the sternum. T cell develop-
ment undergoes a strict selection process: only a small fraction of thymocytes (thymus resident immature 
T lymphocytes) that undergo the maturation process survive the different steps of selection and leave the 
thymus as mature T cells. In the thymic parenchyma, immature thymocytes initially do not express TCR, 
neither of the TCR co-receptor molecules CD4 or CD8, and they are therefore named double negative (DN) 
thymocytes. Under various cellular contacts and soluble factor-mediated signals, DN thymocytes begin to 
assemble pre-TCR structures. Successful surface expression of pre-TCRs induces proliferation of thymocytes 
and triggers further development into double positive (DP) thymocytes, which express both CD4 and CD8 
co-receptors. DP thymocytes express αβ TCR and undergo a complex sequence of stimulation/selection steps 
that are known as positive and negative selection.

Positive selection leads to the death of thymocytes that express TCRs on their surface that do not bind to 
self MHC and are therefore useless for immune response. Only cells expressing TCRs with some affinity for 
self will pass the selection and become single positive (SP) thymocytes that express either the CD4 or the CD8 
co-receptor. These SP thymocytes undergo negative selection, which eliminates potentially harmful T cells that 
express on their surface TCRs that have too high of an affinity for self antigens (complexes formed by self anti-
genic peptides bound to MHC molecules). For sake of clarity, we described positive and negative selection as 
sequential steps; however, in reality these steps of selection occur simultaneously. Thus, negative selection can 
occur both at the DP and SP stage. The combination of positive and negative selection finally allows T cells to be 
not self-reactive, but expressing at the same time useful TCRs, to leave the thymus as mature T cells. In conclu-
sion, the complex cascade of events involved in the development of T lymphocytes can be summarized in this 
sentence: “Thymus selects the useful, neglects the useless and destroys the harmful” (von Boehmer et al., 1989).

It should be noted that, as are many other biological processes, the above-described cellular development 
in the thymus is not totally efficient. Therefore, the thymus does not succeed in eliminating all the potentially 
self-reactive cells. Other mechanisms, globally named “peripheral tolerance” keep the self-reactive cells that 
escaped thymic selection under control. Among the mechanisms of peripheral tolerance, Treg plays a cen-
tral role in the control of self-reactivity. This specialized T lymphocyte subset acts to suppress other T cells. 
Tregs develop in the thymus where they are selected based on their specificity for self-antigens. Once in the 
periphery they inhibit the responses of other T lymphocytes that might react against self-antigens leading 
to a potentially harmful immune responses. Tregs are therefore key players in protecting the organism from 
autoimmune diseases.

It should be noted that the above-described sequence of cell maturation events is an oversimplification of 
the extremely complex process of T cell development. Readers can find more detailed and updated informa-
tion about this process in recent review articles (Chyi-Song Hsieh et al., 2012; Klein et al., 2014).

1.3.4 �TCR  gene organization

The organization and expression of genes that encode TCR chains are perfectly suited to their particular 
receptor function. Although important exceptions exist (Valitutti et al., 1995), we can consider for simplic-
ity’s sake that each T lymphocyte expresses a unique TCR type on its surface with single antigen specificity, 
i.e., each T lymphocyte is able to recognize mostly a unique peptide-MHC complex. In order to recognize the 
immense diversity of peptide antigens, evolution has developed a system that permits the formation of a large 
number of different TCR. This process randomly generates specificity of TCR for antigenic peptides. It takes 
place during thymic development and involves a process of gene recombination very similar to that used for 
rearrangements of the heavy and light chains of the Ig during B cell development.

In its germline configuration, the locus encoding the α chain of the TCR is composed of numerous seg-
ments: V for Variable, J for Joining, and a C for Constant domains. In addition, two D domains for Diversity 
are present in the locus encoding the β chain of TCR. The C domain encodes the constant, hinge, transmem-
brane region, and cytoplasmic tail of TCR chains. Once rearranged the VJ and VDJ segments code variable 
regions of TCR chains (Abbas et al., 2015; Murphy KM, 2012; Paul, 2012).
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These gene rearrangements are governed by Recombination Signal Sequence (RSS). These are palindromic 
sequences, heptameric and nonameric, separated by 12 or 23 pairs of bases, and they serve as anchors to the 
corresponding machinery of RAG-1/RAG-2 recombinase (Mombaerts et al., 1992; Shinkai et al., 1993). The 
β chain genes rearrange first during thymic selection. First, there is the association of one of the D segments 
with a J segment; then a V segment will be added to the previously created DJ segment producing a VDJ 
segment. At this point, all segments of genes located in the V-D-J complex intervals are eliminated and the 
synthesized primary transcript contains the Vβ-Dβ-Jβ-Cβ σεγμεντs.  Introns are eliminated and translation 
of messenger RNA generates TCR β-chain. This protein is then associated with a substitute of α chain of TCR 
to form the pre-TCR and is expressed on the surface of the DN thymocytes. If rearrangement of TCR β chain 
is functional, cells proliferate, and subsequently the rearrangement of genes encoding α chain takes place. A 
V segment will rearrange with a J segment and then, upon transcription and translation, the α chain of TCR 
is expressed. During these gene recombination processes several mechanisms induce variability at the sites 
of gene junction, thus generating extremely high variations in the structure of the region of the TCR that will 
bind the antigen (complementary determining region, see below). It has been estimated that via such processes 
of somatic recombination more than 1015 TCR can be theoretically generated during thymic development. 
However a large number of thymocytes that express a given TCR is eliminated during positive and negative 
thymic selection. Accordingly, it has been estimated that the TCR αβ repertoire of human naive T lympho-
cytes is of about 2.5 × 107 different TCR in the periphery (Nikolich-Zugich et al., 2004).

1.3.5 �TCR  structure

αβ T lymphocytes recognize antigenic peptides in the context of MHC molecules via their TCRs. The TCR 
complex is composed of the αβ dimer (which consists of two transmembrane glycosylated polypeptide chains 
α and β that are linked through a disulfide bond), by the CD3 γ, δ, and ε chains and by the ζζ homodimer 
(Garcia et al., 1996; Schumacher, 2002) (Figure 1.6). These glycoproteins belong to the immunoglobulin (Ig) 
superfamily. α and β chains consist of an amino-terminal extracellular domain containing a variable region 
(V), a constant region (C), and a short hinge region with a cysteine residue necessary for the formation of 
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Figure 1.6  αβ T cell receptor structure. α and β chains form a complex with the CD3 signaling molecules that 
are composed of a γ and ε complex, a δ and ε complex and a ζζ homodimer (written as CD3γε, CD3δε, and ζζ, 
respectively). CD3 chains contain one ITAM motif in their cytoplasmic region, while each ζ chain that plays a 
central role in TCR signal transduction contains three ITAM motifs.
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disulfide bonds. These two chains contain a short intracytoplasmic tail of 5-12 amino acids and a hydropho-
bic transmembrane domain composed of positively charged amino acids allowing TCR to stably associate 
with the CD3 molecules (endowed with a negatively charged transmembrane domain) (Figure 1.6) (Alarcon 
et al., 1988; Rudolph et al., 2006; Schumacher, 2002).

While C domains are invariant for each chain of TCR, independently of the T lymphocyte on which they are 
expressed, V domains vary considerably from one individual T cell to another. This variability mainly resides in 
three regions known as hyper-variable regions or complementary determining regions (CDR) (Chothia et al., 1988). 
Crystallographic studies have shown that CDR regions are projected outside of a V domain to bind pMHC com-
plexes. In TCR the variable regions of α and β chains are disposed side by side to form a unique site for antigen 
recognition. The CDR1 and CDR2 regions mainly bind to MHC molecules, while CDR3 (where most of TCR vari-
ability is concentrated) binds preferentially to the antigenic peptide (Jorgensen et al., 1992; Sant’Angelo et al., 1996).

All three proteins of CD3, ε, γ, δ, have an extracellular domain that contains an Ig type domain, followed 
by a transmembrane region and a cytoplasmic domain of 40-80 amino acids containing an ITAM motif for 
signal transduction. ζ chains have a very short extracellular portion; thus, they do not contain an Ig domain. 
On the other hand, ζ chains have an important cytoplasmic region made of 113 amino acids and containing 
three ITAM motifs (Figure 1.6).

1.3.6 �A ntigen presentation to lymphocytes

The recognition of antigenic peptides by T lymphocytes requires antigen processing and presentation by 
APCs. Antigens are presented to T cells on the surface of the APCs in the form of peptides that are bound 
to the MHC molecules. CD4 or CD8 co-receptors are also involved in recognition of these peptide MHC 
(pMHC) complexes. Whereas CD4+ T lymphocytes recognize antigenic peptides associated with MHC Class 
II molecules, CD8+ T lymphocytes recognize those associated with class I molecules.

Most of the cells are able to present antigens to CD8+ T lymphocytes in the context of their MHC Class 
I molecules. Conversely, only cells expressing MHC Class II can present antigens to the CD4+ T cells: they 
are called professional APCs. Professional APCs include DC, B lymphocytes, and macrophages. Additional 
cells that can express, under certain circumstances, MHC-II molecules and serve as unconventional APC for 
CD4+ T cells include mast cells (Gaudenzio et al., 2009), endothelial cells (Collins et al., 1984), and basophils 
(Perrigoue et al., 2009; Sokol et al., 2009; Yoshimoto et al., 2009).

1.3.7 � MHC genes

The MHC or HLA (Human Leukocyte Antigens) system in humans is a set of more than 200 genes located on 
chromosome 6. The molecules of MHC genes have three basic characteristics: polygenicity, co-dominance, 
and polymorphism. There are three classic genes encoding the α chain of the MHC Class I in humans: HLA-
A, -B, and -C. There are also three genes encoding for human MHC Class II α and β chains: DP, DQ, and DR 
(polygenicity). The co-dominance refers to the expression of two alleles of a certain gene in a single cell. This 
property allows individual cells to express MHC molecules with higher ranges of specificity for peptides, 
since two different alleles of the same gene are expressed. In addition, MHC molecule genes are polymorphic 
genes, referring to the presence of many alleles of each gene in the whole population. This feature, when 
combined with co-dominance, allows for the presentation of a large pattern of antigenic peptides of a given 
antigen by the different individuals of the same species. In this way, it allows the whole population to mount 
a robust response against pathogens that tend to rapidly mutate.

Even though molecules of MHC Class I and Class II have the common property of binding to antigenic 
peptides, they differ in two key aspects:

	 1.	 The MHC Class I molecules are present on the surface of all nucleated cells in the body. The presenta-
tion of endogenous peptides by MHC Class I molecules leads to specific activation of CD8+ T cells. 
These peptides are products of enzymatic degradation of intracellular molecules by proteasome and are 
constituted of 8-10 amino acids (Bouvier, 2003).
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	 2.	 The MHC Class II molecules are present only on the surface of professional APCs. The association of 
the α1 domains with β1 domains of α and β chains forms a groove that can accommodate 12-24 amino 
acid long peptides to be presented to CD4+ T lymphocytes (Pieters, 2000). These peptides are derived 
from degradation of extracellular proteins internalized via endocytosis.

Figures 1.7 and 1.8 depict schematically the Class I and Class II MHC molecule structure and how TCR 
and co-receptors interact with pMHC complexes at the contact site between T lymphocytes and APCs.

T Lymphocyte
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TCR TCR
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MHC class I MHC class II

Peptide Peptide

α α3

α2 α1 α1
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α2β2β2m

Figure 1.8  Schematic representation of MHC molecule interaction with TCR. The peptides bound to the 
pocket of MHC interact with CDR (Complementarity Determining Region) regions of the TCR. These inter-
actions are stabilized through association of CD8 or CD4 co-receptor with MHC Class I and MHC Class II 
molecules respectively.

MHC class I MHC class II

α1 α1

α2

α2

α3 β2m

β1
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Figure 1.7  Structure of MHC molecules. Left, MHC Class I molecules are composed of a 45 kDa chain with 
three domains (α1, α2, and α3, similar to those of immunoglobulins) associated to the β2-microglobulin. α1 
and α2 domains form a pocket, which is the site where antigenic peptides bind to MHC molecules and where 
the polymorphism of the molecule is mostly represented. Right, MHC Class II molecules are heterodimeric 
molecules, composed of two transmembrane glycoproteins: a 30-32kDa α chain that is non-covalently associ-
ated to a 27-29 kDa β chain. The peptide-binding pocket is formed by the α1 domain of the α chain and the 
β1 domain of the β-chain.
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1.4 � T CELL AND APC INTERACTION

T cell and APC cognate interaction is a key step in the initiation of T cell activation and therefore in tuning 
the adaptive immune response. This interaction is accompanied by the formation of a specialized signaling 
area called the immunological synapse (IS). In its original definition, the IS was described as a specialized 
signaling domain formed at the contact site between T cells and APCs, characterized by large-scale molecular 
segregation of surface receptors and signaling components (Monks et al., 1998). Further research led to an 
expansion of this term, where the IS consists of a multitude of structures with a common feature of mediat-
ing intercellular communication (Trautmann and Valitutti, 2003). IS formation between T lymphocytes and 
APCs can turn the T cell on or off depending on the type of presented antigen, type of APC, and duration of 
cell-cell interaction (Benvenuti et al., 2004; Friedl et al., 2005).

A typical sequence of events occurring during productive T cell/APC interaction and IS formation is sum-
marized in Figure 1.9.

T cell/APC interaction can be schematically divided into three phases (Friedl et al., 2005):

	 1.	 Initiation of cell-cell contacts
	 2.	 Duration and stability of contacts
	 3.	 T cell detachment after a few minutes or a few hours, followed by migration resumption.
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Figure 1.9  Encounter between T cells and APC and initiation of IS formation. (1) T cells form random con-
jugates with APC that are mediated by the engagement of adhesion molecules such as LFA-1 and ICAM-1. 
(2) Following productive TCR engagement with peptide/MHC complexes, the adhesion between the two 
cells increases and they form stable conjugates. (3) T cells change shape, stop migration, polarize secretory 
machinery towards the APC, and start to rearrange the molecular components of the IS. Reproduced with 
permission from S. Valitutti et al. (2006) “Immunological Synapse”, in Encyclopedia of Life Science, Wiley. All 
rights reserved.
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1.4.1 �I nitiation of cell-cell contacts

The first step in the interaction between T cells and APCs is their physical contact, which frequently takes 
place in lymph nodes for naive T cells or in tissues for effector T cells. This step is initially independent 
of the presence of antigens. T cell motility and DC probing of the intercellular milieu with their highly 
motile dendrites encourages the random encounter of the cells. T cells scan the APC surface to detect 
antigens. The average migration speed of T lymphocytes is approximately 10 μm/min with peaks of more 
than 25 μm/min (Bousso and Robey, 2003; Miller et al., 2003; Miller et al., 2002). APCs, such as DC, are 
less motile (Lindquist et al., 2004) and their average speed of migration is 6 μm/min (Bousso and Robey, 
2003; Miller et al., 2002; Okada et al., 2005). The high migration capacity of T cells in vivo allows them 
to serially scan a large number of APC. M.J Miller et al. estimated that, in the absence of an antigen, 
approximately 5000 CD4+ T cells can encounter a given DC per hour (Miller et al., 2004) while P. Bousso 
and E. Robey estimated that about 500 CD8+ T cells can scan a single DC in one hour (Bousso and Robey, 
2003). Such rapid and frequent contacts enable recognition of rare antigens by the pool of T cells in a 
lymph node within a reasonable timeframe. In fact, fewer than 100 DCs in a lymph node are sufficient to 
initiate a response with very rare naive antigen-specific T cells (Celli et al., 2012). During this first phase, 
T cells are therefore highly mobile and move from one APC to another. The binding of their TCR with 
pMHC complexes initiates a process of activation and begins the second phase of specific interaction 
(Miller et al., 2004; Stoll et al., 2002).

1.4.2 �S tability and duration of contacts

T cell responses require the integration of signals derived from receptors engaged at the T cell/APC contact 
site over prolonged time: two models have been proposed.

The first, defined as “single encounter model,” postulates a “stable” T cell/APC interaction and stems from 
the initial observation of firm adhesion between T cells and APCs. This model describes T cell “stop signal” 
as a consequence of TCR engagement and a subsequent adhesion molecule-mediated stabilization of cell-cell 
contact. Such stable interactions are paralleled by the formation of IS which may last for hours (Dustin et al., 
1997; Grakoui et al., 1999; Hauss et al., 1995; Monks et al., 1998). Accordingly, full T lymphocyte activation 
and proliferation has been shown to require stimulation over several hours (Iezzi et al., 1998).

Real time monitoring of T cell movements in 3D collagen during interaction with DCs provided support 
for a second model, which postulates “sequential” T cell/APC interactions. This model proposed by P. Friedl 
et al. is based on the observation that several successive transient interactions of about 6-12 minutes are 
formed between motile T cells and their cognate DCs (Faroudi et al., 2003; Friedl et al., 2005; Gunzer et al., 
2000). Even though T cell interactions were rather dynamic, short lived, and sequential, they resulted in T 
cell activation. The capacity of T cells to be activated by multiple contacts suggests the existence of a short-
memory that allows T cells to accumulate signals over time (Friedl et al., 2005).

In vivo experiments showed that the balance between “stable” and “sequential” modes of T lymphocyte 
activation by cognate APCs can be influenced by the strength and quality of antigenic stimulation and by 
the type of APC (Hugues et al., 2004; Skokos et al., 2007). It is tempting to speculate that there are two main 
scenarios of T cell interaction with cognate APCs. First, APCs displaying high affinity pMHC at high den-
sity provide a “stop signal” to T cells and lead to the formation of stable IS. Second, a low or intermediate 
strength of antigenic stimulation leads to dynamic cell-cell interactions due to weak signal transduction and 
failure to completely arrest T cells (Dustin, 2008; Moreau et al., 2015). Several lines of evidence indicate that 
additional factors—including the presence or absence of Tregs (Tadokoro et al., 2006) and of chemokines 
(Asperti-Boursin et al., 2007; Okada and Cyster, 2007; Woolf et al., 2007; Worbs et al., 2007)—can influence 
the “stable” and “sequential” modes of T cell/APC interaction.
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1.4.3 �T ermination of cell interaction

T cell detachment from APC and reacquisition of a migratory phenotype is the terminal phase of cell-cell 
cognate interaction for antigen recognition. To date, this step has not been studied as much and, therefore, is 
not fully understood.

1.5 � TCR/pMHC INTERACTION

TCRs display a remarkable ability to specifically recognize a wide array of structurally and chemically diverse 
antigens. The understanding of the molecular basis of TCR interaction with pMHC has been greatly advanced 
by a number of studies that elucidated key contacts and binding modes of several of these interactions.

1.5.1 �A ffinity of binding

Several studies performed in different T cell models demonstrated that, to achieve full activation, T cells 
require TCR-mediated sustained signaling (Huppa et al., 2003; Mempel et al., 2004; Valitutti et al., 1995). 
This concept is difficult to reconcile with several studies performed using isolated TCR and pMHC molecules. 
These studies based on the measurement of TCR/pMHC binding parameters in solution revealed a low affin-
ity of TCR/pMHC binding (dissociation constant, Kd approximately 1-100 μM) as well as a very short dwell-
time of binding (seconds) (Matsui et al., 1991; Weber et al., 1992). This was a paradoxical finding considering 
the specificity and efficacy of TCR that can recognize one single foreign antigen among a sea of self-pMHC 
complexes displayed on the APC surface. The high specificity of TCR binding is also shown by the fact that 
although a given pMHC complex may act as a strong agonist capable of triggering full activation of a T cell 
through TCR engagement, other related peptides will serve as weak or null agonists and may have no or at 
best partial effects on T cell activation. Moreover, substitution of a single amino acid in the sequence of the 
antigenic peptide presented by MHC can render T cells unresponsive to subsequent stimulation with the 
immunogenic peptide (Kalergis et al., 2001) M.M. Davis and colleagues measured the kinetics of TCR-pMHC 
binding at the cell-cell contact site, by using single-molecule microscopy and fluorescence resonance energy 
transfer (FRET). They showed that, when compared to solution measurements, TCR/pMHC association and 
dissociation rates are even faster (Huppa et al., 2010). Complementary results were obtained using a different 
approach by J. Huang et al. (Huang et al., 2010). Together these results underline the extreme rapidity of TCR/
pMHC binding at the T cell/APC contact site and suggest that, for sustained signaling in T cells, multiple 
rounds of TCR/pMHC binding are required (Huang et al., 2010; Huppa et al., 2010).

1.5.2 �P robability of interaction

Interaction of TCR with pMHC has major constraints. First, although T cells express a significant number of 
TCRs with the same affinity (30,000-50,000 TCR per cell) for a specific antigen, the APCs present only a small 
number of pMHC molecules that can be recognized by those TCRs. In fact, most of the pMHC expressed on 
an APC surface are self-antigens, resulting from the degradation of intra and extracellular proteins. Demotz 
et al. reported that T cells are activated by APCs that display on their surface as little as 0.03% specific pMHC 
complexes. Therefore, the probability that a specific pMHC complex is present at the contact area between 
T cells and APCs during antigen recognition is low. An additional parameter that further reduces the prob-
ability of TCR/pMHC interaction is the length of the extracellular domains of TCR and of their ligands when 
compared to other membrane molecules. Both TCR and pMHC are approximately 7 nm long. Therefore, to 
allow productive TCR engagement, the membranes of a T cell and an APC should be ~14 nm apart. This sce-
nario is difficult to envisage because of the presence of numerous glycosylated long-ectodomain proteins on 
the surface of cells that might prevent such proximity.

In spite of those compelling factors, TCR/pMHC interaction is extremely sensitive. Recent studies, dem-
onstrated that a single pMHC is able to induce signaling, as detected by a transient [Ca2+]i increase in mouse 
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CD4+ T cells and that by maintaining a sustained [Ca2+]i increase in T cells, TCR recognition of only 10-15 
pMHC complexes is strong enough to induce T cell activation (Irvine et al., 2002; Purbhoo et al., 2004). 
Likewise, CTLs were capable of killing target cells expressing only 1-10 pMHC complexes on their surface 
(Huse et al., 2007; Jiang et al., 2011; Sykulev et al., 1996).

In the last decades, many studies tried to investigate this intriguing paradox. Three models have been 
proposed to explain the mechanisms regulating antigen recognition by T cells: the kinetic-segregation model, 
the kinetic proofreading model, and the serial TCR engagement model.

1.5.3 � Kinetic-segregation model

About 20 years ago, S. Davis and P.A. van der Merwe proposed a model of T cell activation to explain how produc-
tive TCR and pMHC interaction might take place at the T cell/APC contact site leading to TCR-coupled signal 
transduction. The “kinetic-segregation model” of TCR triggering postulates that upon T cell/APC encounter, 
small areas of close contact between their plasma membranes are formed, which then allow TCR and pMHC to 
come in contact. The inhibitory CD45 phosphatase, as well as other large-ectodomain tyrosine phosphatases, is 
excluded from the TCR signaling area. CD45 steric exclusion on the one hand facilitates TCR/pMHC encounters 
but on the other hand extends signal transduction associated to TCRs by amplifying protein tyrosine kinase sig-
naling. When T cells detach from the APC, the intimate cell-cell contact areas are dissolved and large-ectodomain 
tyrosine phosphatases are allowed to restore the basal level of signaling (Davis and van der Merwe, 2006). Recent 
studies have confirmed the importance of local segregation of CD45 tyrosine phosphatase from kinases for the 
initiation of productive signaling in T cells (Chang et al., 2016; Choudhuri et al., 2005).

1.5.4 � Kinetic proofreading model

In 1995, T.W. McKeithan proposed the kinetic proofreading model in which a long enough time of inter-
action between TCR and pMHC is considered a crucial element for full activation of T cells (McKeithan, 
1995). According to this model, there is a lapse of time between the initial TCR and pMHC interaction and 
signal transduction. The kinetic proofreading model proposes that TCR-coupled signaling consists of a series 
of intermediate reversible steps leading to full activation of the signaling cascade (Figure 1.10). The model 
is based on three hypotheses. First, the inactive primary TCR/pMHC complex undergoes a sequence of N 
modifications (number of possible modifications) leading to an activated state via a series of intermediaries. 
Even though these modifications have not been described in detail, they can include: phosphorylation in 
tyrosine within the receptor complex, conformational changes of proteins, generation of second messengers, 
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Figure 1.10  Kinetic proofreading model. The kinetic proofreading model suggests that the binding of a 
TCR to a pMHC to form a TCR/pMHC complex initiates a sequence of signaling events with intermediates 
(C1, C2, …). This process culminates in the formation of the final signaling product (CN), which signals to the cell. 
However, if the TCR/pMHC complex dissociates before the formation of CN, the signaling fails. The associa-
tion (k1) and dissociation (k−1) rate constants for the TCR/pMHC interaction are shown, as are the rate con-
stants of the intermediate pathway (kp, assumed to be the same for every step). Adapted from A.J. George 
et al. (2005) “Understanding specificity and sensitivity of T-cell recognition”, Trends in Immunology, 26: 653-
659, with permission from Elsevier.
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or recruitment of scaffolding components to the receptor. Second, dissociation of the interaction leads to the 
reversion of these modifications. Third, upon interaction between TCR and non-specific pMHC, the rate of 
dissociation is sufficiently high to avoid formation of productive interactions. This model explains how T 
cells discriminate among ligands based on kinetic differences in the assembly of the signaling cascade. It also 
implies that variations of the TCR/pMHC binding kinetics can be amplified by signal transduction in order 
to maximize minor binding differences and explain the high specificity of TCR/pMHC interactions.

The kinetic proofreading theory revolves around the concept that short-term TCR engagement will induce 
early signaling events but not late T cell responses, due to the reversibility of early activation steps. The model 
is supported by measurement of TCR/pMHC binding kinetics in solution showing a correlation between the 
duration of TCR/ligand binding and the biologic efficacy of this interactions (Davis et al., 1998; Gascoigne et al., 
2001; Germain and Stefanova, 1999).

1.5.5 �S erial TCR engagement

Even though kinetic proofreading can explain the high specificity of T cell activation induced by TCR/pMHC 
interactions, it does not provide a model to describe the high sensitivity of such interactions with a small 
number of specific pMHC. It has been previously shown that T cells need to undergo sustained signaling to be 
activated to cytokine production and that a prolonged TCR engagement with pMHC is required for sustained 
signaling in T cells (Valitutti et al., 1995). Considering the fact that TCR/pMHC binding has low affinity and 
rapid off-rate, how can TCR engagement be prolonged?

In 1995, S. Valitutti et al. proposed the serial engagement model in order to explain how sustained TCR signal-
ing might take place during antigen recognition. The authors used TCR internalization as a parameter of TCR/
pMHC binding and observed that a few specific pMHC can lead to high levels of TCR internalization, meaning 
that a small number of pMHC can engage, trigger, and down-regulate a considerable number of TCRs. The model 
postulates that low affinity TCRs can rapidly and sequentially bind a small number of specific pMHC resulting in 
a sustained and amplified signaling (Valitutti et al., 1995). The model provides a plausible explanation to the high 
sensitivity of antigen recognition by T cells equipped with low affinity TCRs (Figure 1.11).
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Triggered
TCRTCR peptides pMHC LFA-1 ICAM-1 Self peptide
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Figure 1.11  The serial TCR engagement model. At the T cell/APC contact site a few specific pMHC (red) 
sequentially trigger incoming TCR resulting in sustained signaling. Triggered TCR are internalized and tar-
geted to lysosomes for degradation while unbound pMHC bind new TCR. Reproduced from S. Valitutti 
(2012), The serial engagement model 17 years after: From TCR triggering to immunotherapy, Frontiers in 
Immunology 3, 272.
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Measurements of very fast TCR/pMHC binding on- and off-rates at the contact site between T cells and 
immobilized pMHC (Huang et al., 2010) as well as other experimental and computational studies support 
serial TCR engagement (Valitutti, 2012). However other observations do not support the model (reviewed in 
(van der Merwe and Dushek, 2011) and (Valitutti, 2012)).

Kinetic proofreading and serial engagement models might be not mutually exclusive. In fact, on the one 
hand, the kinetic proofreading explains the specificity of interactions at the molecular level; on the other 
hand, serial engagement explains the sensitivity of T cells to antigenic stimulation at the cellular level.

1.6 � CYTOTOXIC T LYMPHOCYTES/TARGET CELL INTERACTION

In this section, we outline the competitive interaction that takes place during adaptive immune responses 
between the main killer cells (CTLs) and their target cells (virally infected and tumor cells). The balance 
between CTL efficacy and target cell resistance can be indeed viewed as a complex predator/prey system in 
which CTLs act as predators and target cells act as prey undergoing evolution. During the last 20-30 years the 
synergy between experimental, mathematical, and physical approaches has contributed to the understanding 
of such complex competitive interaction.

1.6.1 �A ctivation and differentiation of naive CD8+ T cells 
into CTLs

Naive CD8+ T cells that have not previously encountered the antigen express neither cytotoxic molecules 
nor activation markers and are incapable of cell-mediated cytotoxicity. The activation process of the CD8+ 
T cells starts when naive T cells recognize their specific antigen presented by a DC in the context of MHC 
Class I molecules. This first encounter between naive CD8+ T cells and a DC occurs in secondary lymphoid 
organs such as the lymph nodes and the spleen. Antigen recognition by TCR provides a first activation signal 
and confers specificity to the response. The second signal is provided by the engagement of co-stimulatory 
molecules of CD8+ T cells such as CD28 with their ligands on the DC surface (CD80 and CD86, Figure 1.5). 
Contrary to the first signal, this signal is nonspecific, but it is crucial to the development of an effective CD8+ 
T cell mediated immune response. Absence of the second signal may lead to a sustained state of T cell inac-
tivation, named T cell anergy.

Moreover, there is evidence supporting the idea that CD8+ T cell proliferation and differentiation can be 
influenced by the microenvironment (third signal). This signal is mediated by exogenous inflammatory and 
antiviral cytokines. It provides the means for a CD8+ T cell that encounters the antigen to determine if there 
is “danger” present and to respond accordingly. For instance, in vitro and in vivo experiments identified 
IL-12 and IFN α/β as predominant sources of signal three for CD8+ T cell responses to a variety of stimuli 
(Curtsinger and Mescher, 2010).

The combination of these three signals causes clonal expansion of a specific CD8+ T cell population and 
induces its differentiation into cytotoxic T cells (CTL). While clonal expansion guarantees the presence of a 
sufficient number of antigen specific T cells for eradication of invading pathogens or cancerous cell, it is also 
controlled by a contraction phase during which the number of cells declines and only a limited number of 
memory T cells specific for that given antigen is maintained (Figure 1.3). Memory CD8+ T cells are long-lived 
antigen specific cells that are ready to respond in a faster and stronger manner upon second encounter with 
the same antigen. For instance, after the clearing of a skin infection, a stable population of memory T cells 
continuously patrols skin epithelia in order to rapidly control secondary infections (Ariotti et al., 2012).

1.6.2 �CTL  effector function

Within about 5 days after the initial encounter with DCs, naive CD8+ T cells differentiate into effector CTLs 
equipped with lytic molecules. Upon encounter with cognate target cells, CTLs activate different cytotoxic 
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mechanisms, leading to target cell annihilation. Among those mechanisms, the most rapid and efficient path-
way of CTL-mediated cytotoxicity is the release of the pore-forming protein perforin together with gran-
zymes and other proteolytic enzymes (all stored in cytosolic granules, named lytic granules) at the CTL or 
target cell IS (Bertrand et al., 2013). CTLs can also trigger target cell death by ligation of target cells surface 
receptors containing cytoplasmic death domains, such as the molecule Fas (Rouvier et al., 1993). Moreover, 
following their activation, CTLs secrete cytokines such as IFN-γ that contribute to their function in control-
ling tumorigenesis (Kortylewski et al., 2004).

1.6.3 �E fficacy of CTL
As mentioned above, CTL are extremely sensitive to antigenic stimulation since they can be activated to 
secrete their lytic granules by a small number of specific pMHC complexes displayed on the APC surface 
(Purbhoo et al., 2004; Sykulev et al., 1996; Valitutti et al., 1996). In addition, lytic granule secretion is a very 
rapid response. Indeed, cytotoxicity occurs within a few minutes or even seconds after the initial contact 
between CTLs and target cells, independently of the strength of antigenic stimulation (Bertrand et al., 
2013; Stinchcombe et al., 2001; Wiedemann et al., 2006). Another distinct feature of CTL biology is that 
these cells can kill multiple target cells, either simultaneously or serially by bouncing from one target cell 
to another (Macken and Perelson, 1984; Perelson and Bell, 1982; Poenie et al., 2004; Rothstein et al., 1978; 
Wiedemann et al., 2006). This property allows each individual CTL to annihilate more than one target 
cell. Interestingly, in clonal CTL populations, although all CTLs are genetically identical, some of them 
(super-killers) are much more efficient than others at killing target cells (Vasconcelos et al., 2015). It should 
be noted that recent in vitro and in vivo studies redefined the paradigm of CTL efficacy by showing that 
the number of target cells that an individual CTL can kill is limited to about 12 cells per day (Halle et al., 
2016; Vasconcelos et al., 2015).

1.6.4 �CTL /Tumor cell interaction

The paradigm of exquisitely efficient CTLs does not directly translate into an efficient status of immune sur-
veillance against tumors. Indeed, although tumor-specific CTLs expand at relatively high frequency in can-
cer patients and infiltrate malignant tissues, the effector function of these naturally occurring CTLs is often 
insufficient to achieve clinical remission (Gajewski et al., 2007; Romero et al., 2006; Zitvogel et al., 2006). 
Various immunotherapy strategies are currently being tested in cancer patients in order to potentiate CTL 
responses against tumor cells. Among those, therapies based on monoclonal antibodies targeting inhibitory 
surface molecules such as CTLA-4/CD80-CD86 or the PD-1/PD-L1 axis are certainly very promising (Aris 
and Barrio, 2015; Gajewski et al., 2013; Lindsay et al., 2015); however, they need to be optimized to establish 
the best compromise between clinical benefits and adverse effects.

Several molecular mechanisms account for tumor escape from CTL-driven immune surveillance (Zitvogel 
et al., 2006). Effector CTL generation can be impaired by the low immunogenicity of tumor antigens and low 
expression of co-stimulation signals. Once generated, effector CTLs must overcome additional barriers for 
successful control of tumor growth. On the one hand, the tumor micro-environment can be enriched in 
immune-suppressive cytokines and/or metabolic factors (e.g., TGF-β, IL-10, indoleamine 2, 3-dioxygenase, 
arginase-1, and nitric-oxide synthase 2) (Viola and Bronte, 2007; Zitvogel et al., 2006). On the other hand, 
tumor cells can modulate the expression of surface molecules to avoid recognition by CTLs (e.g., by down-
regulating Class I MHC molecules) (Gajewski et al., 2007; Zitvogel et al., 2006). Furthermore, Tregs and other 
suppressor cells are frequently enriched in tumor infiltrates and can contribute to the inhibition of CTL 
effector function (Gajewski et al., 2013). An additional level of tumor resistance is based on tumor cell mol-
ecules that can “defuse” the lytic potential of CTLs. Among these, granzyme inhibitors of the serpin family 
have been thoroughly characterized (Medema et al., 1997). We recently showed that, in melanoma cells, CTL 
attack triggers a rapid lysosome secretory burst at the IS. This leads to degradation of perforin and to sus-
tained melanoma cell resistance to CTL-mediated cytotoxicity (Caramalho et al., 2009; Khazen et al., 2016). 
All in all, it is now well established that, although CTLs are not the only actors of the anti-tumor immune 
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response (Zitvogel et al., 2006), a global failure in the CTL “effector phase” contributes to the inefficiency of 
the immune surveillance against tumors (Gajewski et al., 2007).

The description of the complex multitude of escape mechanisms deployed on tumor sites suggests that, 
under the selective pressure of the immune system, cancer cells can undergo several evolutionary altera-
tions in their molecular expression as well as in their growth behavior in order to subvert such immune 
responses and finally escape immune surveillance. This concept, named immunoediting was put forth by 
R.D. Schreiber et al. in the early 2000s and has since received substantial experimental support (Schreiber 
et al., 2011). Our research team has recently started to combine experimental and mathematical approaches 
to study the dynamic interaction of CTLs with tumor target cells undergoing immunoediting. In an ini-
tial study, we developed a computational model that mimics the interaction between CTLs and tumor cell 
nodules using numerical simulations. The model describes the competition between CTLs and the tumor 
nodules and allows both temporal and two-dimensional spatial progression. It provides probabilistic esti-
mates of tumor eradication in numerical simulations in which tunable parameters influencing CTL efficacy 
against the tumor nodule are tested. Our results show that in a context of stochastically occurring mutations 
leading to tumor immunoediting, CTL attraction towards scout siblings having detected the tumor is a cru-
cial parameter allowing early productive CTL/tumor collisions and therefore tumor eradication (Christophe 
et al., 2015). This recent study is only one among several computational studies that have addressed the com-
plex issue of CTL target cell interaction. For instance, mathematical studies contributed to shed light on the 
capacity of CTLs to kill several target cells either sequentially (Macken and Perelson, 1984; Perelson and Bell, 
1982) or simultaneously (Gadhamsetty et al., 2014) and on the parameters that influence CTL killing efficacy 
during 3D CTL/target cell interaction (Graw and Regoes, 2009). Moreover, mathematical modeling has been 
instrumental to estimate CTL killing efficacy in vivo (Yates et al., 2007) and to provide a better understanding 
of the balance between CTL efficacy and virus escape during infection (Garcia et al., 2015; Garcia et al., 2016).

1.7 � OF MICE AND MEN: KEY ISSUES THAT REMAIN 
TO BE ELUCIDATED

During the writing of this chapter we have deliberately avoided precisely distinguishing between results 
obtained by using in vivo mouse or in vitro human models, as this distinction might be confusing for non-
expert readers. Results obtained using the two experimental approaches are complementary, yet important 
differences exist between in vivo and in vitro protocols and sometimes results diverge. Mouse in vivo immu-
nology has been traditionally recognized as the leading immunological science allowing, for obvious ethical 
reasons, to address questions that could not be addressed in humans and to recapitulate the entire patho-
physiology of immune responses. Yet, a recent view, based on major advancement in the experimental tools 
by which human T cells are interrogated, postulates that human immunology is indeed extremely relevant to 
the understanding of immune system function in health and disease (Mestas and Huges, 2004; Davis, 2008). 
The availability of various “humanized mouse” models such as patient derived tumor xenografts (PDTX) will 
be instrumental to address “human immunology” questions within an in vivo environment, but will be prob-
ably not sufficient to fill the gap between human and mouse immunology.

Today, a major and key opportunity for physicists, mathematicians, and computer scientists interested to 
immunology is to provide computational tools, data analysis solutions, and mathematical models that might 
allow the merging of the knowledge derived from in vivo studies with the ex vivo and in vitro results obtained 
from patients’ specimens, thus contributing to a “integrated” view of human immunology.

1.8 � CONCLUDING REMARKS

In this short chapter we attempted to offer to non-biologist readers a “flavor” of the fascinating complex-
ity of the immune system. We do not have the ambition to provide an exhaustive survey of such a com-
plex topic. However, we hope to have raised the attention on several aspects of immune system biology that 
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might strongly profit of collaboration between immunologists and mathematicians/physicists. For the sake 
of clarity and due to length limitation, we could not discuss in depth aspects of immune cell biology that 
are currently at the leading edge of the research in computational biology, such as cell motility behaviors, 
gene expression profiles by individual cells, and asymmetric and heterogeneous cellular behaviors. These and 
additional exciting topics are discussed in dedicated publications.

It is intriguing that immunology is, among life science disciplines, the one that frequently raises interest in 
epistemologists and computational scientists. The reasons for such an interdisciplinary interest to immunol-
ogy are manifold and include the complexity of cellular and molecular networks, the high degree of plasticity 
of immune responses, and even the evolution of a dedicated immunological language and nomenclature that 
recapitulates immune system complexity. It is important to remember that the immune system, together with 
the nervous system, is the only multi-cellular apparatus able to keep a memory of previous experiences and to 
provide adapted responses to challenges. Moreover and intriguingly, both cells of the immune and nervous 
system have developed synaptic tools for complex intercellular communication.

Deciphering the complexity of the immune system learning mechanisms and adapted responses remains 
a formidable challenge for both experimental and computational scientists today.
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2

Overview of mechanistic modeling
Techniques, approximations, and assumptions

STEVEN M. ABEL

2.1 � INTRODUCTION

The immune system consists of many interacting components that collectively identify and respond to a mul-
titude of pathogens. Importantly, a well-functioning immune system eliminates pathogens while avoiding a 
response against cells and tissues of the host organism. The components that comprise an immune system are 
numerous, ranging from molecular players such as cytokines and antibodies to cells such as T and B cells of 
the adaptive immune system. Because the immune system utilizes processes ranging from the molecular to 
the organismal level, many different time and length scales are relevant. Additionally, immune responses are 
governed by networks of interactions, including feedback among the various scales.

Due to the complicated, multiscale nature of the immune system, mathematical and computational model-
ing has emerged as an important tool in understanding immune responses [1–5]. It is often difficult to under-
stand immune responses by intuition alone, and experiments frequently produce confounding results whose 
mechanistic underpinnings are most readily teased apart by mechanistic modeling. Mechanistic modeling 
represents underlying biological processes in a mathematical framework. Mathematical and computational 
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analysis can then be used to investigate the behavior of the model. The usefulness of the model is gauged by 
its consistency with existing experiments and its ability to predict or explain new behavior (for example, 
behavior under different experimental conditions). This can provide mechanistic insight, and the model can 
be used to test new hypotheses.

In this chapter, we provide an overview of modeling techniques that are commonly used to study the 
immune system on a systems level. For a given biological question, one must decide which methods are most 
appropriate in order to gain mechanistic insight. We also highlight assumptions and approximations that 
underlie the various modeling approaches, which can help guide decisions about which methods to use. 
Throughout, we use T cells as an example by which to explore various modeling techniques, relevant scales, 
and underlying approximations and assumptions.

2.1.1 �T  cells: An illustrative example

T cells play a key role in adaptive immunity, coordinating the immune response against pathogens and 
directly killing infected cells. T cells vividly illustrate the varied scales relevant to an immune response: They 
translate information about receptor binding into a cellular response that leads to altered gene transcription, 
cell proliferation, and effector functions such as the secretion of cytokines that influence the behavior of other 
cells. Thus, understanding T cell immunology requires understanding processes ranging from individual 
protein-protein interactions to cell proliferation and ultimately host-pathogen dynamics (including pathogen 
evolution). We present here a short description of relevant T cell biology to provide context for the remainder 
of the chapter. Many excellent reviews can be found on T cell signaling and the role of T cells in immune 
response [6–10].

T cells physically interact with other cells, which they monitor for molecular signatures of pathogens. 
They do this using the T cell receptor (TCR) complex, which binds to major histocompatibility complex 
proteins (MHCs) on other cells that present short peptide fragments derived from either self or non-self pro-
teins. Each T cell expresses many copies of a distinct TCR and functions as a specific and sensitive detector of 
antigenic peptides. Different T cells have different specificity.

How T cells reliably translate information about TCR binding into a functional response remains an 
important open question in immunology. Most of the key proteins involved in transducing the signal are likely 
known. These range from transmembrane coreceptors and phosphatases to proteins involved in the intracel-
lular signaling cascade. The earliest events in T cell activation involve TCR binding, which occurs on the time 
scale of seconds. T cell activation is strongly correlated with the average binding time of a TCR to a particular 
peptide-MHC (pMHC) [11,12]. Early intracellular signatures of T cell activation (such as calcium flux) can be 
seen on a time scale of ~15 s [13]; over minutes to hours, proteins at the cell-cell junction reorganize to form a 
micron-scale immunological synapse [9]. Upon activation, T cells proliferate, differentiating into both short-
lived effector T cells and long-lived memory T cells (these quickly expand in number upon re-exposure to the 
stimulating antigen). The effector T cell populations contribute to the immune response by influencing the 
behavior of other immune cells or by killing infected cells directly. Multiple antigenic peptide fragments may 
be present during an infection, leading to the expansion of multiple T cell lines with different specificity. Once 
the infection is cleared, the immune system must return to a quiescent state, so as to avoid long-term damage 
brought about by persistent immune activity.

2.2 � TECHNIQUES

The goal of computational modeling in systems immunology is to provide mechanistic insight into biologi-
cal processes underlying immune responses. In this section, we provide an overview of the most common 
modeling techniques used. The overview of techniques here is not exhaustive, and variants of the methods, 
various combinations of the methods, and other modeling frameworks can be found in the literature. For 
each modeling technique, we provide illustrative examples in which the formalism was applied to aspects of 
T cell biology.
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The starting point for modeling is typically an experimentally motivated network of interactions. For 
example, for signal transduction, one would start with the relevant proteins and their fundamental interac-
tions such as binding, unbinding, and enzymatic activity leading to post-translational modification (e.g., 
protein phosphorylation). Experiments ideally help to parameterize the various kinetic rates associated with 
the relevant processes such as protein-protein binding. The methods below focus on the systems level, with 
details relevant at finer scales (such as molecular details of proteins) reflected in the kinetic parameters.

2.2.1 �O rdinary differential equation (ODE) models

One of the most common modeling approaches in systems immunology uses ordinary differential equations 
(ODEs) to describe the dynamics of specific components that interact through a network of well-defined 
interactions. The dynamical variables are continuous and typically represent quantities like the concentra-
tion of a protein in a cell or the concentration (or number) of a cell type in blood. The differential equations 
describe the time evolution of the dynamical variables and are parameterized by kinetic rates such as the 
binding and dissociation rates of two proteins that physically interact.

ODE models provide a deterministic description of the dynamics without consideration of spatial varia-
tion. They describe the dynamics of average concentrations and are often referred to as well-mixed. Although 
molecules and cells are discrete entities, when the total number of each species is large, it is often a reasonable 
approximation to assume that they vary continuously. Having on order of hundreds of proteins, for example, 
is often enough to justify this approximation, although details of the specific system matter in assessing 
whether this is the case.

The use of ODE models relies on the assumption that fluctuations and spatial heterogeneity are not impor-
tant features of the dynamics being studied. These types of models have been used widely to study signal 
transduction networks, gene regulatory networks, and cell populations. Models of the TCR signaling net-
work have ranged from variations of the kinetic proofreading model to detailed models involving hundreds 
of biochemical components [13,14]. Below, we provide an example of a relatively simple model that produces 
a sharp response threshold as a function of the TCR-pMHC dissociation rate. Models of gene regulatory 
networks have included work investigating effective network topologies underlying lineage commitment as 
T cells differentiate from a naïve state to an effector state [15]. ODE models have also been used to understand 
T cell population dynamics, including the division, differentiation, and maturation of immature T cells in the 
thymus and the response of T cell populations to HIV infection [16,17].

2.2.1.1 � EXAMPLE: EARLY TCR SIGNALING NETWORK

To illustrate the use of ODE-based modeling, we consider the phosphorylation of residues within 
immunoreceptor tyrosine-based activation motifs (ITAMs) on the intracellular portion of the TCR 
complex. Phosphorylation of these residues is a key initial step in T cell signaling and activation. This 
example involves TCRs, pMHCs, and coreceptors, which are the individual components depicted in 
Figure 2.1(a).

Coreceptors are transmembrane proteins at the T cell surface that can bind to a conserved region on the 
extracellular part of MHC proteins. The intracellular portion of coreceptors can also bind to the tyrosine 
kinase Lck, which is responsible for phosphorylating residues within ITAMs on the TCR complex. Because 
it interacts with both the TCR complex and coreceptors, Lck indirectly couples the TCR and coreceptor. 
The model we consider here is restricted to two phosphorylation sites on the TCR complex (corresponding 
to a single ITAM region). Each of the three individual components depicted in Figure 2.1(a) can bind with 
the other two, leading to binary and ternary complexes. With the three different phosphorylation states of 
the TCR, there are a total of 24 distinct species to track over time. The time dependence of each species is 
described by mass-action kinetics, resulting in a system of 24 coupled ODEs governed by eight kinetic rates. 
The ODE describing the concentration of unbound, unphosphorylated TCRs is given in Figure 2.1(b). The full 
set of ODEs is described in detail in reference [18].

This network has been studied using ODE models [18] as well as stochastic, particle-based simulations 
(see below for a discussion of these methods) [19,20]. As mentioned above, the TCR-pMHC dissociation rate 
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is strongly correlated with T cell activation. In Figure 2.2, we see that this relatively simple network produces 
results consistent with experimental trends: There is a sharp transition from low to high TCR phosphoryla-
tion levels around a threshold value of the dissociation rate. The system of ODEs was solved using the numeri-
cal solver ode23s in MATLAB (all files are available upon request).

2.2.2 �P artial differential equation (PDE) models

Partial differential equation (PDE) models are typically used as an extension of ODE models when spatial 
degrees of freedom are important. For example, they may describe both reactions and the diffusion of pro-
teins in a signal transduction network. As in ODE models, dynamical variables are continuous and the time 
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Figure 2.2  The fraction of TCRs that are fully phosphorylated at steady state as a function of the TCR-pMHC 
dissociation rate. As the binding time increases (decreasing dissociation rate), there is an increase from low 
to high levels of fully phosphorylated TCRs. This represents a transition from an inactive to an active signaling 
state. Inset: Time-dependent response of the fraction of TCRs that are fully phosphorylated for a specific value 
of the TCR-pMHC dissociation rate.
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evolution is deterministic. The PDEs describe the time evolution of each dynamical variable in both time 
and space. PDE models also ignore fluctuations and are useful when the number of each component is large.

PDE models are computationally more expensive than corresponding ODE models, but spatial details are 
important in some cases. For example, upon stimulation, T cells eventually form an immunological synapse 
in which surface proteins are segregated into distinct spatial regions [9]. The size of the immunological syn-
apse is several microns in diameter and proteins are present in large numbers, making the synapse a candi-
date for PDE models that describe the motion and reactions of proteins. In a study using both experiments 
and computation, Cemerski et al. observed that a weak agonist peptide could stimulate greater T cell prolif-
eration than a strong agonist [21]. Using drift-diffusion PDEs that incorporated relevant signaling reactions, 
the authors showed that an inability to form part of the immunological synapse could promote the ability of 
the weak agonist to stimulate proliferation. This highlighted that nontrivial spatial effects could impact the 
efficacy of agonist peptides in stimulating T cells to proliferate.

2.2.3 �P article-based stochastic models

Many processes associated with an immune response are inherently stochastic. For example, T cell activa-
tion can be initiated by even a single antigenic pMHC on the surface of another cell [22–24]. When such small 
numbers of molecules play an important role, fluctuations can have significant effects.

Particle-based stochastic models treat the components of the model as discrete objects (often referred to as 
particles or individuals) rather than as continuous variables. For example, the abundance of a particular pro-
tein is measured by the integer number of that type of protein. The dynamics of the system are governed by 
a Markov process that is formally described by the chemical master equation. The master equation expresses 
the time dependence of the probability of each possible state of the system in terms of a differential equation. 
Such systems of equations are usually difficult or impossible to solve analytically. However, computer simula-
tions can be used to generate stochastic trajectories consistent with the underlying probability distribution. 
These methods are known as kinetic Monte Carlo simulations and are commonly carried out using the well-
known Gillespie algorithm [25,26]. Stochastic simulations are computationally more demanding than the 
ODE and PDE models described above, and hence can limit the size and scope of the networks considered.

Particle-based stochastic simulations can be well-mixed or spatially resolved. Spatially resolved simula-
tions often discretize space into a lattice, with particles that can transition from one lattice site to another 
(typically a neighboring site). Since one must keep track of the number of each type of particle, as well as 
where each particle is in space, this leads to a much larger state space. Additionally, the spatial motion of the 
particles leads to much larger computational costs. Stochastic effects can be incorporated into other modeling 
formalisms as well. One approach is to use stochastic differential equations (SDEs) to describe the stochastic 
evolution of chemical concentrations. Under certain conditions, one can derive SDEs (Langevin equations) 
starting from the particle-based chemical master equation [27].

TCR signaling is initiated by potentially small numbers of molecules in a noisy environment. It 
remains unclear how T cells make fast and reliable decisions in the presence of fluctuations. Many cells, 
including T cells, utilize networks that give rise to bistability—the ability of the network to stably reside 
in one of two steady states. Bistable networks can be used by cells to make binary (on or off) decisions 
in response to a graded stimulus. Das et al. used well-mixed stochastic simulations in an extensive study 
showing that the protein Ras can be activated in a bistable manner [28]. Ras, a small GTPase, can exist in 
an inactive or active form. It is a key signaling protein in T cells and many other cell types. The authors 
showed that the bistability arose due to positive feedback through SOS, a guanine nucleotide exchange 
factor that activates Ras and is allosterically controlled by binding to Ras. The stochastic simulations 
provided insight into populations of lymphocytes that, in response to a given stimulus, had both active 
and inactive subpopulations.

Spatially resolved stochastic simulations, while computationally more expensive, can give insight when 
spatiotemporal correlations are important. For example, they helped to elucidate the role of coreceptors in 
the earliest stages of T cell activation [19,20], and they have been used to model populations of migrating cells 
in the lymph node [29].
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2.2.4 �L ogic models

For many problems of interest, there is a paucity of experimental results by which to parameterize the rates 
of a kinetic model like the ODE, PDE, and stochastic models described above. Systematically characterizing 
the behavior of the kinetic model and conducting parameter sensitivity analysis can be prohibitively time 
consuming and may not lead to mechanistic insight. A class of models known as logic models can be useful 
in such situations. While they lack detail about kinetics of interactions and absolute concentrations of spe-
cies, they capture significant relationships between components and are relatively efficient to simulate. The 
basic idea is that variables are restricted to a small number of possible values (e.g., on or off) and the network 
of interactions is translated into update rules based on logical rules. As the system evolves in time, given the 
current state of the system, the next state is determined by evaluating the logical rules (e.g., if proteins A and 
B are active (“on”), then C is “on” after the update occurs).

A logic model incorporating many components of the TCR signaling network was used recently to inves-
tigate fate determination in naïve T cells [30]. The model, constructed by systematic comparison with experi-
ments, was used to identify key proteins in the signaling network and to make experimentally confirmed 
predictions about the effects of transient TCR stimulation and altered cytokine milieu. The computationally 
efficient nature of such models allows rapid feedback between changing the model and comparison with 
experimental results. This can provide important mechanistic insight even though the underlying kinetic 
parameters are largely ignored.

2.3 � ASSUMPTIONS AND APPROXIMATIONS

In this section, we provide an overview of some of the common assumptions and approximations made 
when developing mechanistic models. To set the stage, we start with an aphorism attributed to the statisti-
cian George Box [31]: “All models are wrong but some are useful.” The immune system operates over mul-
tiple scales with nontrivial networks of interactions that control immune responses. As such, mathematical 
modeling is essential for understanding and predicting its behavior, but the complex nature of the immune 
system also means that approximations and assumptions must be made. A primary challenge of modeling is 
constructing models that are both tractable and useful, meaning that they provide biological insight. Each 
subsection below describes an assumption that is commonly used when developing models. We illustrate 
cases in which the assumption is inadequate or an altered or more nuanced model is required.

2.3.1 �A ssumption 1: Relevant components and interactions 
are known (or hypothesized)

The starting point for any model is a list of components relevant to the biological process of interest. Depending 
on what is known experimentally and what level of detail is desired in the model, this may involve few to 
many components. Once the components are enumerated, the interactions between them must be identi-
fied to define a network. The most important step in developing a model is defining the network topology, as 
all subsequent results depend on the interactions defined. Missing components, interactions, or even entire 
pathways may lead to results that are inconsistent with experiments. While this may seem disheartening, it 
can lead to insight, as failed models often suggest places to look for missing components and interactions [32].

2.3.2 �A ssumption 2: Kinetics are well defined

It is often difficult to construct computational models because the individual kinetic parameters governing 
the dynamics are largely unknown. In some cases, the rates may be measured explicitly or have some con-
straints placed on their value. However, as we discuss here, even “known” quantities may depend strongly on 
the method used to measure them.
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Binding kinetics in situ. The kinetics of TCR-pMHC binding are often measured using surface plasmon 
resonance techniques in which soluble TCRs in solution bind with pMHCs immobilized on a surface [33]. 
However, this is a much different situation than the one encountered in situ, in which both TCRs and pMHCs 
are associated with flexible membranes that contain many proteins and are coupled to the cytoskeleton and 
cytoplasmic processes.

Measuring and understanding TCR binding kinetics in situ is an exciting and challenging area from both 
experimental and computational perspectives. Two pioneering works first demonstrated that the binding 
kinetics in situ vary significantly compared with traditionally measured values [34,35]. Huppa et al. used 
FRET (fluorescence resonance energy transfer) between TCRs and pMHCs to show that the unbinding rate 
and the binding rate both increased significantly in situ [35]. The effect was shown to depend on the actin 
cytoskeleton. Huang et al. used mechanical assays to probe TCR-pMHC binding kinetics when both were in 
a membrane environment [34]. They also discovered strongly altered binding kinetics when compared with 
solution measurements, with a broader range of affinities measured in situ for a panel of different pMHCs.

Force-dependent binding kinetics. A recent study by Liu et al. utilized a biomembrane force probe to ana-
lyze the kinetics of TCR-pMHC interactions in situ with various forces applied to the TCR-pMHC bond [36]. 
Their measurements produced a counterintuitive result: At zero applied force, stimulatory pMHCs had 
shorter lifetimes than non-stimulatory pMHCs when bound to TCRs. However, the trend was reversed when 
TCR-pMHC lifetimes were characterized with 10 pN of applied tensile force. Hence, T cell receptors exhibit 
nontrivial binding kinetics under the application of force and, upon encountering stimulatory ligands, exhibit 
the characteristics of what are commonly called catch bonds [36–38]. This is an important observation, since 
TCRs likely experience a variety of forces at cell-cell interfaces. Understanding the force-dependence of bind-
ing kinetics is likely to influence our understanding of the mechanisms of T cell activation and will likely 
influence systems approaches to modeling T cell signal transduction [39,40].

Allosteric control of catalytic fluctuations. We previously described positive feedback in the activation of the 
small GTPase Ras by SOS [28]. A recent study provided additional insight by quantifying the rate of Ras activation 
by single SOS molecules [41]. Surprisingly, it was observed that individual SOS molecules sample a broad range 
of Ras activation rates and that the SOS molecules stochastically transitioned between long-lived catalytic states. 
The average lifetime of a state was on the order of 100 s. It was further observed that transitions between catalytic 
states were subject to allosteric regulation: Longer-lived, highly active states of SOS were promoted when active 
Ras was bound allosterically. This suggests a potential regulatory mechanism in which allosteric control of rare 
high-activity states controls the activation of Ras. Stochastic computational models incorporating these effects 
demonstrated the possibility of catalytic fluctuations serving as a regulatory mechanism. It remains to develop a 
better understanding of the functional role of fluctuations between different states in individual molecules.

2.3.3 �A ssumption 3: The importance of fluctuations is known

As discussed previously, different modeling frameworks make different assumptions about stochasticity. For 
example, ODE and PDE models do not account for fluctuations. Given a set of initial conditions, the models 
evolve in time deterministically. Particle-based models, in contrast, incorporate the effects of fluctuations but are 
computationally more expensive. It can be difficult to know a priori which type of modeling framework to use. In 
some cases, certain components (key protein or cellular players, for example) are present in small numbers. This 
often indicates that stochastic effects may be important, and hence a particle-based method is most appropriate.

At other times, it is less clear whether stochastic fluctuations may play an important role. For example, 
the presence of positive feedback can lead to bistability, as was seen in the Ras activation network [28]. Due to 
spontaneous fluctuations, it is possible to stochastically switch from one state to another, although the chance 
of switching becomes vanishingly small as the system size increases in the well-mixed limit. In this regime, 
an ODE model may seemingly provide an adequate description. However, when space is considered, localized 
fluctuations involving much smaller numbers of particles—even in an initially homogeneous system—can 
lead to stochastic switching that would be highly unlikely in the well-mixed limit [42]. The switching occurs 
by a nucleation and growth mechanism, in which an active domain forms in a localized region and then 
grows by positive-feedback induced spreading [43]. This mechanism is influenced by the mobility of particles 
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and the geometry of the system (e.g., membrane versus cytoplasm). This highlights a case in which a poten-
tially unknown and nonobvious mechanism like the localized fluctuation-induced nucleation of an active 
domain can dramatically influence the emergent behavior of a network. Simple models that capture key 
biological features can provide insight into unexpected fluctuation-dependent phenomena.

2.3.4 �A ssumption 4: Spatially homogeneous systems 
can be treated as well-mixed

In the previous assumption, we highlighted a mechanism by which an initially homogeneous system can 
spontaneously form localized domains. This suggests that spatial degrees of freedom can influence the 
dynamics of initially homogeneous systems in a manner that cannot be captured in well-mixed simula-
tions. Most proteins in the cytoplasm or at the plasma membrane are mobile, with diffusion coefficients 
that depend on the local environment [44]. It is often assumed that a spatially homogeneous system can 
be regarded as well-mixed (either ODE or stochastic), with effects of diffusion incorporated into effec-
tive, diffusion-influenced kinetic parameters. There are cases in which this assumption works well. For 
example, Dushek et al. studied rebinding of kinases to the TCR and explicitly checked that an ODE model 
using diffusion-influenced parameters was consistent with a stochastic, spatially resolved simulation [14]. 
However, it is often difficult to capture the effects of space and diffusion in effective well-mixed models [45]. 
Calculating diffusion-influenced parameters is a difficult theoretical task, and it has been done only for 
simple reaction schemes in infinite domains. Application to finite systems with arbitrary geometries and 
network structures remains an open problem.

In addition to theoretical challenges in calculating effective rate parameters, spatiotemporal correlations 
between particles can influence network behavior in nontrivial ways. A striking example is seen in a kinase-
phosphatase reaction network in which a substrate protein can be phosphorylated at two sites. This network is 
a caricature of early TCR signaling, in which the cytoplasmic tail of the TCR is phosphorylated by the kinase 
Lck. The toy network can exhibit bistability in some parameter regimes. Takahashi et al. showed that spatio-
temporal correlations between substrate molecules and the modifying enzymes could suppress bistability in 
a way that was not captured by well-mixed models with modified rates [46]. The reason was that after dis-
sociation, rebinding between the two molecules could occur much faster than in a well-mixed system. Other 
studies further investigated the role of crowding and dimensionality on rebinding, showing that the effects of 
rebinding were enhanced in crowded environments and at the membrane [45,47].

2.3.5 �A ssumption 5: The cell has a simple shape 
and organization

The cell environment is complex, and most modeling approaches make significant approximations when 
treating spatial aspects of biological processes. For example, the membrane and cytoplasm are spatially het-
erogeneous, crowded, and dynamic [44]. The cytoskeleton influences membrane shape, contributes to non-
diffusive transport through the cell, and can locally trap molecules in “corrals” at the plasma membrane. 
Additionally, the cortical actin cytoskeleton modulates TCR binding kinetics and contributes to synapse for-
mation [48,49]. Most models are formulated with simple geometries that lack many of the structural features 
(organelles, crowding molecules, etc.) of real systems.

In many cases, it is likely a good approximation to assume the complicating features of cell geometry and 
organization are captured by effective diffusion coefficients and kinetic parameters [44]. However, as experi-
mental techniques allow finer-resolution imaging of cells, spatial heterogeneity is emerging as a potentially 
important regulatory mechanism [50,51]. For example, Lillemeier et al. studied the spatial distribution of 
TCRs and a membrane-associated scaffold protein, Linker for Activation of T cells (LAT). LAT recruits a 
number of key signaling proteins upon its phosphorylation. Before T cell stimulation, TCR and LAT appear 
to reside in separate clusters that then come together after stimulation [52]. Interestingly, subsequent studies 
identified a separate pool of LAT that resides on vesicles near the membrane [53,54]. These studies indicate 
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that surface-bound LAT plays a minor role in T cell signaling compared with the intracellular pool. This 
highlights an example in which initial assumptions about spatial organization are influenced by higher-
resolution experiments. Formulating models that account for spatially heterogeneous distributions of mol-
ecules may provide more insight into mechanisms associated with the spatial organization.

Additional features that are emerging as regulators of cell responses include compartmentaliza-
tion of network components, spatial confinement within regions of the cell, and membrane curvature. 
Compartmentalization within a cell can lead to separate populations of proteins that interact only when they 
are exchanged through boundaries between the compartments. For example, the cytosol and nucleus can 
have different populations of proteins that are exchanged by an active transport process across the nuclear 
membrane. In such a case, each compartment might be regarded as well-mixed, but coupling between the 
compartments would occur through boundary conditions. Theoretical work has shown that when compart-
mentalized, protein populations can transmit larger amounts of information to the nucleus [55]. Physical 
confinement of networks can also influence responses. For example, in a computational study of B cell activa-
tion, displacing the nucleus so that is was close to the plasma membrane on one side of the cell was sufficient 
to initiate B cell activation [56]. The confined region promoted the nucleation of an active domain that spread 
throughout the cell.

Biophysical features of membranes are emerging as important regulators of T cell activation [57]. 
Membrane curvature can affect the organization of proteins and lipids, and hence cellular responses [58–60]. 
Additionally, forces generated by the membrane and cytoskeleton may play important roles in antigen dis-
crimination [39,61,62] and can potentiate killing of other cells by cytotoxic T cells [63]. Such problems high-
light interesting areas for hybrid computational models that account for both physical features of the cellular 
environment and the signaling networks they influence.

2.3.6 �A ssumption 6: Many (most) kinetic parameters 
are “sloppy”

We conclude this section on a positive note. While some modeling approaches (like logic models) allow one 
to avoid choosing detailed kinetic parameters, other modeling approaches require parameters to be defined. 
These parameters can be experimentally measured, estimated based on other rates, trained on experimen-
tal data sets, or, as often is the case, chosen (somewhat) arbitrarily [64]. It appears that a commonly valid 
assumption is that the specific value of many kinetic parameters is not important for understanding overall 
network behavior [32]. Such parameters have been termed “sloppy” in the literature [65,66]. In some cases, 
parameters can be changed by orders of magnitude without significantly affecting the system behavior. This 
flexibility in parameter values often allows mechanistic models to provide insight even when some param-
eter values are not known explicitly. On a cautionary note, it is desirable to show that results obtained with 
a certain set of parameters are robust to changes in the parameters, as this strengthens claims made based 
on the model.

2.4 � FUTURE DIRECTIONS

The main challenge of systems immunology is to develop multiscale understanding of immunological 
responses. This requires approaches that span scales and methodologies. For example, in this chapter, we out-
lined methods to analyze networks of interacting components. Most modeling studies focus on a particular 
level of modeling, such as a signal transduction network, a gene regulatory network, etc. Coupling models 
of cell regulatory networks with population models will be an interesting future direction that will capture 
potentially important interplay between cellular decisions and the population responses that they influence. 
It will also be useful to incorporate additional molecular-level information, for example, from experiments 
or molecular dynamics simulations, into network-level models. For example, one could ask how immune 
responses are influenced by a mutation in a protein or by a drug-protein interaction.
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Another important direction for systems immunology is to couple high-throughput and information-rich 
experimental data sets with molecular modeling. The data sets can be used to generate and parameterize net-
works, suggest biological mechanisms, etc. Data mining and experimentally-motivated model construction 
are likely to provide a productive avenue that can be coupled with model analysis to gain additional mecha-
nistic insight into the biological processes underlying immune responses.
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3

The fundamentals of statistical data analysis

WILLIAM C. L. STEWART

3.1 � INTRODUCTION

Statistical data analysis is an integral part of scientific research. It provides acceptably fuzzy answers to 
questions that are difficult to answer exactly. For example, “What is the average height of humans?” or 
“Are men taller on average than women?” Obtaining exact answers to these questions is impractical, as 
it would require the measurement of every living human being! On the other hand, obtaining accept-
ably fuzzy answers through the statistical analysis of real data, despite its caveats,1 is fairly routine. For 
example, the first question is often answered by a parameter estimate and its corresponding confidence 
interval, while the second typically involves a hypothesis test and a suitable statistic. This chapter explains 
some of the essential aspects of parameter estimation and hypothesis testing, without abandoning the 
statistical analysis of data. A brief description of the interplay between estimation and testing, and its 
corresponding practical implication, are also given. Throughout, I will assume that a well-defined ques-
tion already exists and that appropriate levels of planning and diligence have been given to the design 
and execution of each experiment or study. Therefore, the only thing left to discuss is the statistical data 
analysis itself.

3.2 � STATISTICS PRIMER

Before I begin, it is important that a number of elementary terms are well understood. Advanced readers may 
prefer to skip this section and start immediately with likelihoods—the topic of Section 3.3.

Typically, an algebraic variable (denoted x) is an unknown number, and it is only after solving some equa-
tion of interest that we come to know which number. For example, the equation x + 3 = 5 implies that the 
variable x is the number 2. By contrast, a random variable is a collection of numbers, and each number in the 
collection occurs with a certain probability whenever an experiment (or study) is performed. For example, 
if we define the random variable X to be the integers 1 through 6 with each number having probability 1/6 
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of being observed, then X corresponds to the roll of a fair (six-sided) die. The probability assigned to each 
outcome is called the distribution of X, and these probabilities can be estimated from a number of rolls. For 
example, an excellent estimator of pj—the probability that X = j for each possible outcome j ∈ {1,..., 6} is nj /N, 
where nj is the number of times that j was rolled, and N is the total number of rolls. Note that pj is more similar 
to an algebraic variable than is the random variable X; however, in Statistics pj is typically called a parameter, 
not a variable.

Now, let’s suppose that after 100 rolls, our estimate of the distribution of X is (0.16, 0.13, 0.19, 0.19, 0.18, 
0.15). Intuitively, these numbers appear to be close to 0 166. , but is the die fair? Answering this seemingly 
simple question is complicated because two experimenters using the same die will almost certainly arrive at 
different estimates, and because, irrespective of the number of replicates, the estimate will never be exactly 
(0.166, ,0.166)

. Therefore, we shall decide the fairness of the die on the basis of a test statistic and its p-value. 
Let’s define an intuitively appealing test statistic (denoted T) to be the Euclidean distance between our esti-
mate of the distribution and (0.166, ,0.166) . As such, large values of T suggest that the die is not fair, but 
“How do we know if T is large?” In Statistics, we agree that T is large when the chance (i.e., the probability) 
of seeing something “more extreme” with a fair die is rare [i.e. less than α, for some α ∈ (0,1) that the experi-
menter selects before the die is rolled]. This probability is called the p-value, the number α is the false positive 
rate (i.e., the chance of falsely concluding that a fair die is unfair), the parameter vector (0.166, ,0.166)  is 
the quantification of the null hypothesis that the die is fair, and the entire decision-making procedure is an 
example of a hypothesis test.

It is also useful at this time to review a couple of basic ideas in probability theory. In keeping with our 
six-sided die example, a useful concept in probability theory is the idea of expectation—that is, “What do 
we expect to see on average over a large number of independent rolls?” The expectation of the random vari-
able X (denoted EX) is the weighted average of the outcomes of X. The weights depend on the parameters 

(p1,..., p5) through the probability of each outcome. Hence, the expectation of X is defined as j X j⋅ =∑ Pr( ), 
which comes to 3.5 for a fair die. Note that the expected value of X (i.e., the average value across an infinite 
number of rolls) need not be an observable outcome of X (e.g., EX ∉ {1,…,6}). Another useful quantity that 
summarizes the degree to which the distribution of X concentrates around EX is the variance, defined as 
Var(X) ≡ E(X – EX)2.

3.3 � LIKELIHOODS

The likelihood function is the backbone of any statistical data analysis that posits a parametric model for the 
data. The likelihood function, or “the likelihood” as it is more commonly called was invented by Fisher [1] 
and is defined as

	 L P( , )θ θR R≡ ( ) 	 (3.1)

Thus, the likelihood is a real-valued function of a finite-dimensional parameter θ that depends on 
observed (i.e., real) data R through Pθ(R)—the probability of the data given the model specified by θ. Many 
commonly used statistical techniques in data analysis including (but not limited to) linear models, analysis 
of variance, z-tests, t-tests, and contingency tables, arise quite naturally from likelihood theory [2]. This is 
also true for several less common statistical techniques including (but not limited to) Markov models, hidden 
Markov models, autoregressive models, and models for the multilocus inheritance of genetic material across 
generations [3,4].

For large samples, likelihoods have a host of extremely useful statistical properties, provided that a cer-
tain set of mild “regularity conditions” [5] are met. In order to understand these properties, let’s define the 
maximum likelihood estimator (MLE) (denoted θ̂) as the value of θ that maximizes the likelihood in Eq. (3.1). 
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Note that θ̂  also maximizes any non-negative function that is proportional to Pθ(R), irrespective of sample 
size. However, for large samples the following statements are also true:

	 1.	 The distribution of θ̂  is approximately normal.
	 2.	 θ̂  approaches the true value of θ.
	 3.	 The variance of θ̂  can be estimated from the curvature of the log-likelihood, and approaches the 

Cramér-Rao lower bound [6].
	 4.	 MLE’s are approximately best unbiased estimators of the true value of θ.
	 5.	 Using the method of test inversion [6], certain null hypotheses can be tested (see Section 3.4 for details).

These statistical properties of MLEs are seminal, but they only represent a small fraction of the intellectual 
treasures that lie deep within the likelihood coffer. Although the following concepts are beyond the scope 
of this chapter, the highly motivated student may be interested to know that the asymptotic distribution of 
twice the log-likelihood ratio (described in Section 3.8) is essentially completely characterized under the null 
hypothesis (and to some extent, under various alternative hypotheses as well) for tests involving compos-
ite nulls, nuisance parameters, and null hypotheses on the boundary of the parameter space [7]. Furthermore, 
because of various maximization algorithms, such as Newton-Raphson [8], expectation-maximization (EM) [9], 
stochastic approximation [10,11], and simulated annealing [12], efficient parameter estimation is possible 
in the presence of missing data. In addition, robust parameter estimation in the presence of model mis-
specification is often achievable through sandwich estimators and influence functions [13,14]. Lastly, many 
of the aforementioned results continue to hold even when the so-called “regularity conditions” are relaxed. 
In particular, it is not necessary for all observations to be identically distributed, nor is it necessary for all 
observations to be independent [15].

To give a numerical example illustrating the importance and generality of likelihoods, consider the fol-
lowing: Suppose we have CD4 T-cell count data (see Table 3.1) on 12 mice at day 30 post influenza infection 
(Group A) and 10 mice at day 35 (Group B). Further, let’s suppose that we are interested in testing the null 
hypothesis of equal means between the groups, that is H0 : μA = μB. The scatter plot of the data along with 
the best fit from a simple linear regression (Figure 3.1) shows that the sample mean of Group A (1077.7) is 
larger than the sample mean of Group B (1070.1). However, because two random continuous outcomes will 
never be the same, we must ask ourselves, “How likely are we to see a difference this large (or larger) simply 
by chance?”, or put another way, “Would a difference of this magnitude be rare, if the null hypothesis were 
true?” This question is answered by the p-value, and when the p-value is sufficiently small (say p < 0.05), we are 

Table 3.1  Data pictured in Figure 3.1

Group A Group B

1092 1074

1088 1062

1080 1059

1067 1067

1072 1078

1093 1070

1078 1082

1066 1065

1075 1063

1084 1081

1074

1063
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obliged to reject the null hypothesis in favor of the alternative hypothesis that the group means are different 
(i.e., H1 : μA ≠ μB).

The p-value from the simple linear regression is 0.07145, so a difference of this magnitude (or larger) 
occurs by chance about 7% of the time. This result is suggestive but not statistically significant at the 5% level, 
so we do not have sufficient evidence in these data to reject H0 : μA = μB (i.e., the null hypothesis that the aver-
age count of CD4 T-cells is the same across groups). However, a more interesting point is that the two-sample 
t-test, which is the scaled difference between group means, yields the same p-value: 0.07145 as a simple linear 
regression. To understand why, let’s take a closer look at the two-sample t-test:

	
T G G

S n m
a b

p

≡ −
+1/ 1/

, 	 (3.2)

where n = 12, m = 10, Ga  is the sample mean of Group A, and Gb  is the sample mean of Group B. Here,

	
S n S m S

n mp
a b≡ − + −
+ −

( 1) ( 1)
2

,
2 2

	 (3.3)

where Sa
2  and Sb

2  are the usual unbiased estimators of variance for groups A and B, respectively. Surprisingly, 
with a little algebra, one can show that the likelihood ratio test statistic (i.e., twice the log-likelihood ratio) can 
be rewritten in terms of the expression on the righthand side of Eq. (3.2) [6]. Thus, three seemingly unrelated 
statistical tests are in fact the same. Moreover, many commonly used tests are either equivalent or closely 
related to a test within the likelihood umbrella [2].

3.4 � PARAMETER ESTIMATION AND HYPOTHESIS TESTING

In the previous section, I tried to convey a basic and rudimentary understanding of the importance and 
generality of likelihoods, without paying too much attention to Eq. (3.1). Now, I will peel back the thinnest 
layer of likelihood theory to illustrate its importance and generality in a quantitative sense, using symbolic 
abstraction, calculus, and set theoretic arguments along the way.

Group A                    Group B

O
bs

er
ve

d 
da

ta

Figure 3.1  Scatter plot of the data in Table 3.1 along with its corresponding regression line.
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For ease of exposition, let us begin by assuming that the data R ≡ {R1, R2,…,Rn} are iid (independent and iden
tically distributed) according to Pθ(R), and that the likelihood in Eq. (3.1) satisfies the aforementioned “regular-
ity conditions.” For a concrete example, let’s assume that the data {R1, R2, …, Rn} are the heights of n randomly 
sampled adult individuals,2 and let’s assume that the data are normally distributed with unknown mean μ and 
known variance σ2. For technical reasons that are beyond the scope of this chapter, we equate the likelihood to 
the probability density function whenever the data are continuous3 (as opposed to the actual probability when the 
data are discrete). Furthermore, recall that the probability of two independent events in succession is the product 
of their individual probabilities. Therefore, given the independence across individuals, the likelihood of μ is:

	 L f r f( ) ( ; ) (r ; );µ µ µR ≡ × ×1  n 	 (3.4)

	
= ( ; )

=1i
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= 1
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πσ
µ σ

� (3.5)

Note that each f(∙) in Eq. (3.4) has the same characteristic “bell-shaped” curve centered around μ, and that 
the likelihood only depends on μ, because σ2 is assumed to be known.

An excellent estimator of μ is the argument that maximizes Eq. (3.5): this estimator is called the maxi-
mum likelihood estimator (MLE) of μ (denoted µ̂). Since ɡ(t) = log(t) is increasing on (0,∞), log L(μ;R) is max
imized at the same location as L(μ; R). Hence, we can compute µ̂  by taking the first derivative of log L(μ; R):
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setting it to zero, and solving for μ:
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Thus, in the case of iid normal data, the MLE(μ) is the sample mean, and because σ2 is assumed known, 

a 95% confidence interval for the unknown μ is: µ̂ σ±






1.96
n

. Moreover, for any parametric probability 

model satisfying the “regularity conditions,” the difference between Var( )µ̂  and −










−

E Rd L
d

2

2

1
( ; )log µ

µ
 goes 

to zero as the sample size goes to infinity, which means that the latter is an excellent estimator of the former. 

Here, in the special case of iid normal data, −

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σ , which of course is exact. The entire 

theory of maximum likelihood (ML) estimation extends to higher dimensions, where ordinary derivatives 
are replaced by partial derivatives, and to more complicated models and data structures, where the equation: 
d L

d
log ( ; )µ

µ
R = 0  may not have a closed form solution.

There is a rather interesting connection between parameter estimation and hypothesis testing when one 
is interested in testing whether the true (but unknown) value of the parameter is equal to a specific value of 
interest (e.g., a simple null hypothesis). To see how these two concepts are connected, let’s suppose that instead 
of an estimate of μ, we now want to test H0 : μ = μ0 at a fixed false positive rate of 5%. As in Section (3.2), 
we could form a test statistic, compute its p-value, and decide to reject (accept) H0 if the p-value is less than or 
equal to (greater than) 5%. However, an equivalent procedure called test inversion states that we can decide 
to reject (accept) H0 if μ0 falls outside (inside) the 95% confidence interval (CI). Recall that a 95% CI for μ is a 
random interval that depends on the observed data r and has probability 95% of covering μ. The test inversion 
procedure hinges on the following tautology:

	 µ µ∈ ∈⇔C A( ) ( ),r r

where C(r) is a confidence set containing plausible values of μ, and A(μ) is a set of outcomes (i.e., hypotheti-
cal observations), such that for each outcome in the set, one would accept H0 if the hypothesized value were 
μ and the false positive rate were α. With this tautology, one can show that C(r) is a (1-α) CI for μ, and that 
for any point μ* outside of C(r), the observed data r is sufficient evidence to reject the simple null hypothesis 
that μ equals μ* [6]. In practice, testing a simple null hypothesis indirectly through ML estimation and test 
inversion is sometimes preferable to the direct approach outlined in Section (3.2).

Nevertheless, despite this fairly amazing relationship between estimation and testing, the test inversion 
method of Section (3.2) can be quite cumbersome when testing more complicated hypotheses, such as com-
posite null hypotheses (e.g., H0 : μa − μB = 0) or simple null hypotheses in the presence of nuisance parameters 
(e.g., H0 : μ = μ0 with σ2 unknown), or null hypotheses with vector valued parameters (e.g., H0 0

2
0
2: ,µ µ σ σ= = . 

A more elegant and general approach that can handle all of these cases (and many more) is the method of 
likelihood ratio tests (LRTs).

The theory behind LRTs is extensive, and much of it is too advanced to discuss in this introductory chap-
ter. However, one result is so important and fundamental to hypothesis testing and data analysis that I will 
state it here, and in defense of the underlying rationale, I will give a simple heuristic argument that might 
appeal to the reader’s intuition.

Recall that the MLE is the value of the parameter that makes the observed data most probable. Thus, 
the likelihood is greater at the MLE ≡ θ̂  than it is at any other possible value of θ. Let’s suppose that we are 
interested in testing some other value of θ (e.g., H0 : θ = θ†). Because θ̂  is the MLE, the data must be more 
probable at θ̂  than at θ†, and so the likelihood ratio (LR): L L( )/ ( ))ˆ †θ θ  must be greater than 1. Moreover, 
large values of the LR suggest that the null hypothesis: H0 : θ = θ† is false. This overarching idea is formalized 
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in the LR testing procedure. Specifically, let the parameter space (denoted Ω) be a Euclidean space of dimen-
sion u (e.g., the real line), and let ω be a nested subspace of Ω with dimension v (e.g., a single point), and let 
θ† be the constrained MLE (i.e., the MLE subject to θ ∈ ω;). Then, when H0 : †θ θ=  is true, the following is 
also true:

	
2 ( ; )

( ; )
,2log

ˆ
†

L
L

nk
θ

θ
χR

R
→ → ∞as 	 (3.8)

where n denotes the sample size with respect to independent realizations R = (R1, R2,…,Rn), and the integer 
k = u – v is the difference between the dimensionality of Ω and ω. Therefore, for large samples, the null distri-
bution of any LRT is approximately χ2 with k degrees of freedom.

3.5 � MAXIMUM ENTROPY

Although the likelihood approach to statistical inference (e.g., ML estimation or LRTs of simple or com-
posite nested hypotheses) is used extensively, there are other alternative approaches as well. In the fields of 
Statistical Mechanics and Information Theory for example, probability distributions are routinely estimated 
from empirical data in accordance with the principle of maximum entropy, not maximum likelihood. One 
issue with the ML approach in this setting (i.e., when an aggregate measure of the entire sample is observed, 
instead of a collection of measurements from n individuals or experimental units) is that there can be an infi-
nite number of solutions. Another issue (albeit philosophical) is that ML yields the distribution that makes 
the observed data most probable, whereas maximizing the entropy, which is the tendency of an ordered sys-
tem to become disordered over time, yields the most disordered (i.e., completely random) distribution subject 
to constraints imposed by the data.

To better understand the maximum entropy (ME) approach, let’s revisit our discrete random variable X 
from Section 3.2 (i.e., the roll of a six-sided die). The entropy of the distribution of X is defined as

	
H p pi i( ) log ,p ≡ −∑

where the summation is taken over the set of possible outcomes i ∈ {1, . . . , 6}, and p is the parameter vector {pi}. 
Now, one could imagine that a newly manufactured set of low-quality dice might for example favor the value 
6 because this face has the most material removed and presumably is the lightest. However, we suspect that 
the real-world effects of wear and tear from successive rolls will increase the entropy over time, and that after 
a certain number of rolls each future outcome will essentially be equally likely. Let’s suppose that we observe 
a mean of 3.9 from 100 rolls, and that we want to estimate p subject to constraints imposed by the observed 
data, and in accordance with our belief that entropy is always increasing. This is a standard Lagrange multi-
plier problem [8] with a criterion function H(p) and two constraints: EX = 3.9 and j jp =∑ 1. The maximum 
entropy (ME) estimate of p is the argument that maximizes
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where λ and ϕ are the Lagrange multipliers, one for each constraint. To maximize (3.8), we set its partial 
derivative to zero and solve for pj
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Since the pj′s sum to 1, Eq. (3.9) implies that exp( / exp( )λ φ− ∑1 j . Therefore, p j jj = ( )/ ( )exp expφ φ∑ . 

Furthermore, because ∑ jpj = 3.9, we can use the Newton-Raphson algorithm to solve for ϕ. Starting with 

an initial guess of 0, which corresponds to a p of (1/6, …, 1/6), the algorithm converges after four iterations 
to ϕ ≈ 0.1387638. Hence the maximum entropy (ME) estimate of p is (0.1146, 0.1316, 0.1512, 0.1737, 0.1996, 
0.2293), and indeed, the probabilities are increasing in j.

Note that the ME approach is quite general, and in addition to discrete distributions over finite sample 
spaces, there are ME distributions for discrete distributions over unbounded supports and for continuous 
distributions defined on (a,b), for real numbers a and b with b > a. For a list of commonly used ME distribu-
tions see [16].

3.6 � CONCLUDING REMARKS

Throughout this chapter, I have focused on parameter estimation and hypothesis testing, with several illus-
trative examples of relevant data analyses. More formally, given a family of probability distributions Pθ (·) 
indexed by a parameter θ, I have addressed two main questions: “Which distribution is best supported by 
the data?” and “How well do the data support this distribution over a competing hypothesis of lower dimen-
sion?” Becoming proficient at answering these two questions is invaluable; but proficiency is really just the 
beginning. In addition to parametric estimation and testing, there is also the class of nonparametric statis-
tics to consider. These statistics do not assume a parametric model. They are often criticized for being less 
powerful than their parametric counterparts when the parametric model is correctly specified, but they are 
also praised for being more robust when the parametric model is mis-specified. Two other important areas 
of interest are imputation and classification. Although, these terms are often used interchangeably with esti-
mation and testing, respectively, the former pertains to unobserved random variables, whereas the latter 
pertains to unknown (but fixed) parameters.

In any event, strategic decisions will have to be made when choosing the type of statistical analysis. 
Typically, these decisions will depend on the scientific questions of interest, the complexity of the data, and 
the experience of the analyst. Then, in implementing this overall strategic plan, a myriad of smaller decisions 
will usually have to be made along the way. Often, there will not be a right or wrong decision per se, but one 
hopes that every decision will be justified in some way. The prudent data analyst is reminded to remain pas-
sionate about the analysis, but indifferent about the results! This will give the data a better chance to tell their 
story, and in hearing it, Science will have a better chance to advance.
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ENDNOTES

	 1.	 The statistical analysis of real data has hidden costs that include, but are not limited to, the identifica-
tion and management of any number of the following: data processing errors, outliers, misinformation, 
and incoherent data points.

	 2.	 Because the genes that influence growth are under selective evolutionary pressure, most humans do not 
continue to grow into adulthood.

	 3.	 For a continuous random variable Z with density f(z|θ), the Pr a Z a h f z dz
a

a h

θ θ( < < )= ( | )+
+

∫  for h > 0. 

If θ* denotes the value of θ that maximizes f(z|θ), then it can be shown that θ* also maximizes 
limh+→0Prθ(a < Z < a + h); and intuitively, this final expression is L(θ; z).
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4.1 � INTRODUCTION

Recent technological advances such as bead-based multiplexed cytokine screening, RNA deep sequencing, and 
mass cytometry have significantly expanded the number of multiplexed measurements that can be collected from 
the same biological sample and from single cells. However, acquiring these data sets is far from the end of the 
experiment. One major challenge is how to derive meaning from these hundreds or thousands of measurements.

A useful approach to analyzing large data sets is to use the data to guide model construction without mak-
ing any prior assumptions about underlying mechanisms. Given the biological complexity of the immune 
system, there are few cases in which mechanisms are known in enough detail to fit experimental data to a 
preexisting model of biological interactions. However, data-driven models allow the user to more intuitively 
understand the biological information contained within large, multivariate data sets and often reveal new bio-
logical insights. For example, data-driven models may identify critical protein species that need to be included 
in future mechanistic models, they might suggest new hypotheses for future experimental studies, or they 
might provide clinically relevant diagnostic models that lead to predictive tests of some disease conditions.

There are many data-driven modeling approaches to choose from, some of which are covered in later 
chapters. In this chapter, we introduce principal component analysis (PCA), one of the most established 
data-driven modeling methods, and one that has been used to gain novel biological insights from large 
immunological data sets. In addition, we will also discuss two useful variations of PCA, partial least squares 
discriminant analysis (PLSDA) and partial least squares regression (PLSR). PLSDA and PLSR not only aid 
in condensing and visualizing large data sets, but also allow for data prediction.
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4.2 � PRINCIPAL COMPONENT ANALYSIS: AN OVERVIEW

4.2.1 � Graphical illustration

PCA is a linear regression method that takes a set of experimental observations for which a large number of 
variables have been measured (referred to as the data matrix X) and identifies new “super” variables called 
principal components. Principal components allow the user to view the entire data space in two or three 
dimensions that capture the most important information in the original measurements. This dimensional-
ity reduction (reducing a high number of axes, or dimensions, to just two or three) is accomplished math-
ematically by analyzing how each variable changes with every other variable in the data set. PCA places high 
weight on those variables that change together and deemphasizes those that show little covariation with other 
variables. The principal component coordinates are weighted linear combinations of the original variables, 
allowing users to see how each measured variable relates to other variables in the data set and how all vari-
ables contribute to the observed differences among the biological samples.

To understand PCA conceptually, we will provide an example drawn from the immunology literature 
involving T cell phenotype classification. T cells play a central role in cell-mediated immunity. In the exam-
ple study, researchers were interested in quantifying the range of functions that are exhibited by CD8+ cyto-
toxic T cells. CD8+ T cells, similar to other cells of the immune system, differentiate into distinct subsets 
based on their exposure to antigens. The subsets are traditionally classified based on surface marker expres-
sion into naïve, central memory (TCM), or effector memory (TEM) cell groups. Although it is thought that 
these subsets have distinct functions (e.g., secretion and cytotoxic potential), little is known about which 
functions are associated with each group. To explore the variability in these classifications and functions 
at the single-cell level, mass cytometry was used to measure 25 functional and phenotypic cellular markers 
for single CD8+ T cells following activation with phorbol myristate acetate-ionomycin (PMA/I) [1]. PCA 
was then used to understand how these markers varied by subsets classified by traditional surface marker 
staining.

We will use this example to provide a graphical illustration of PCA. Imagine a simplified mass cytometry 
experiment as described above but with only two functional readouts for each single CD8+ T cell: the level of 
intracellular cytokine staining for tumor necrosis factor-α (TNF-α) and macrophage inflammatory protein-1β 
(MIP-1β). In this case, our data matrix contains a different single cell in each row and each cell is described by 
two variables, TNF-α and MIP-1β level, arranged into columns (Figure 4.1a). Thus, it is possible to plot each 
cell in two-dimensional space based on the level of these functional markers (Figure 4.1b). To demonstrate the 
classification capability of PCA, we have labeled each cell as naïve, TCM, or TEM based on surface marker expres-
sion that was measured at the same time as cytokine production (Figure 4.1c).

We are now ready to perform PCA on this simplified data set. As described above, the first principal com-
ponent (PC1) is directed along the axis that captures the most co-variation among the measured variables. It 
is possible to visually see this axis (Figure 4.1c), which corresponds to a positive covariation in production of 
TNF-α and MIP-1β. After the direction of PC1 is identified, the data are rotated (i.e., transformed) and the 
remaining variation is subtracted, such that each cell is described by a single coordinate on PC1 (Figure 4.1d). 
This PC1 coordinate effectively classifies naïve versus differentiated T cells by a single coordinate along PC 1, 
which is a combination of the original TNF-α and MIP-1β coordinates. This illustrates how PCA can be used 
to find a new axis that captures important information about the data.

However, we can see that PC1 alone cannot distinguish between TCM and TEM cells. To distinguish between 
these cells, we can draw a second line that is orthogonal to PC1 that captures the negative covariation in 
TNF-α and MIP-1β (Figure 4.1e). This is the second principal component (PC2). By rotating the data and 
plotting them on PC1 versus PC2, it is now possible to classify the cells into naïve, TCM, and TEM groups, albeit 
with some error (Figure 4.1f).
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4.2.2 � Mathematical explanation

Now we can return to the real biological problem for which 25 variables describe each sample (i.e., single 
cell). In this case, the axes in data space are highly multi-dimensional and thus it would be difficult to visual-
ize the direction that captures the most variation on a two-dimensional page. Mathematically, however, the 
process is the same regardless of the number of variables. The direction of maximum variation in the data can 
be identified by calculating the covariance matrix, a matrix of values that describe the covariation between 
each variable and every other measured variable in the data set. Thus for a data matrix of m observations and 
three variables (x, y, and z), the data matrix X is defined as

	

X =
a1 b1 c1… … …

am bm cm 	

where each row contains the measurements associated with one biological sample. The covariance matrix C 
of X is defined as
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Figure 4.1  Graphical illustration of principal component analysis (PCA) for a mass cytometry data set. 
(a) Measurements of TNF and MIP-1β are recorded for m cells to form an m × 2 data matrix. (b) Cells can be plotted 
as points in the TNF- MIP-1β data space. (c) PCA identifies the direction along which the data has the largest vari-
ance (PC1). By classifying the cells based on surface marker expression (measured separately), it is possible to see 
that the variation captures systematic differences between the cells. (d) Samples plotted in one dimension using 
the PC1 coordinate, which effectively separates naïve versus differentiated CD8+ T cells. (e) PCA also identifies an 
orthogonal direction that captures the second largest variance in the data (PC2) and separates TCM and TEM cells. 
(f) Projections along PC1 and PC2 partition the different cell states but do not identify three separate clusters. 
(Adapted from Ringer, M., Nat Biotechnol, 26, 303–304, 2008.)
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The covariance matrix C is a square matrix (i.e., it has an equal number of rows and columns). Square 
matrices have special vectors associated with them called eigenvectors, for which multiplication by C maps 
the eigenvector to a multiple of itself:

	 Cz z= λ

The eigenvector z has a corresponding eigenvalue λ, and the total number of eigenvectors is equal to the 
dimensions of C. The eigenvector with the highest value of λ identifies the direction in data space that will 
capture the most variation in the original measurements of the data matrix X, the eigenvector with the second 
highest value of λ identifies the direction of the second highest variation in the data set, and so on. The eigen-
vectors of the covariance matrix are identified and rearranged in order from highest to lowest. This creates a 
new square matrix that is used to do a coordinate transformation on the original data set.

Following transformation of the data matrix into a new coordinate space, each sample in the data set is 
expressed as a linear combination of the original variables. However, due to the arrangement of the eigenvec-
tors in order of decreasing eigenvalue, the first vector in the new coordinate system is optimized to capture 
the most variation in the original data set. The reduction in data dimensionality is achieved because typically 
only the two to three eigenvectors with the highest eigenvalues are retained prior to the data transforma-
tion. Dropping the remaining eigenvectors effectively emphasizes the directions (axes) that capture the most 
variation in the data set and eliminates those that capture little variation. The underlying assumption is that 
systematic variation contains information that is biologically relevant and lack of systematic variation is 
noise. In summary, the eigenvectors of C arranged from high to low values of λ mathematically identify the 
principal components of the data set.

For an in-depth discussion of the linear algebra and data matrix manipulations that underlie PCA, we 
refer our readers to other resources at the end of the chapter. In the remainder of the chapter, we will focus 
on the practical steps of PCA implementation and how these steps change for variations on PCA, including 
PLSDA and PLSR. We further provide the reader with a framework for analyzing different types of data sets 
using PCA (Example 1), PLSDA (Example 2), and PLSR (Example 3) that are drawn from the immunology 
literature.

4.3 � PCA: IMPLEMENTATION

4.3.1 �T he data matrix

PCA is performed on a data matrix (X) that is arranged by placing the experimental samples (observations) in 
rows and the measurements (variables) in columns. For example, measurements of secretion of 10 cytokines 
at three time points for samples from three donors separately treated with four different stimuli would result 
in a data matrix of 12 rows (samples: three donors by four treatments) by 30 columns (three time point entries 
for 10 cytokines).

The PCA algorithm is not sensitive to the order of the observations or variables in the data matrix, even 
if the variables represent measurements over time, because PCA does not incorporate any a priori informa-
tion about the data. One way to incorporate additional information from a time course of measurements is to 
calculate metrics from the time course. These could include mean values, maximum values, slopes between 
time points, and area under the curve [2].

4.3.2 �P reprocessing the data

PCA derives principal components by capturing variation directly from the input data set. In most cases, it 
is important to perform data pre-processing on the data matrix prior to performing PCA to avoid empha-
sizing variations in the data that are not necessarily related to information content. Without preprocessing, 
PCA will overemphasize variables that have high mean values and that vary over a large range and will 
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deemphasize variables that have low mean values and vary over a more limited range. In many biological 
examples, the absolute value of the measurement is not indicative of the importance of that variable. For 
example, the range of measurement intensity values for a protein detected with a fluorescently conjugated 
antibody will be affected by the background intensity or specificity of the antibody used for detection, and 
therefore the relative differences between measurements of two different proteins within a single sample are 
not meaningful. Data preprocessing avoids the pitfall of assigning meaning to these experimental measure-
ment artifacts.

Data are commonly standardized by “mean centering” the data by subtracting the mean of a given mea-
surement across all the observations (i.e., subtracting the mean from the column). The data are further “vari-
ance scaled” by dividing by the square root of the variance of the measurement (i.e., dividing by the standard 
deviation of the column):

	

=
√

xscaled
xi,raw – xi,raw

var(xi,raw – xi,raw) 	

Variance scaling has the added benefit of making the variables non-dimensional in the data matrix. Thus, 
preprocessing is especially important when measurements from different experimental assays that have dif-
ferent units and data ranges are combined in the same data matrix. While mean centering and variance 
scaling tends to be the most common approach for preprocessing biological data, there are other approaches 
available that may be more appropriate for specific implementations of PCA.

4.3.3 �S cores and loadings

As described above, the eigenvectors of the covariance matrix C form the mathematical basis of PCA. 
However, most practical applications of PCA identify principal components by decomposing (or factoring) 
the data matrix into a structure part and a noise part:

	 X = TPT + E	

The structured part is a sum of vector products that recapitulate the eigenvectors. The vectors that are 
multiplied together are called the scores vectors of the matrix T and the loadings vectors of the matrix PT. 
The vector products are the principal components. The residuals (or the data variability that is not captured 
by the factorization into the principal components) are collected in the matrix E. The matrix algebra can be 
visualized graphically as:

	

X =
t1 t2

p1 p2
+ + +… ET T

Typically we are only interested in the first two or three principal components (i.e., the first two or three 
vector products), which means that the unaccounted for variability in the data that is collected in the residual 
matrix E will be disregarded. Although at first this might seem undesirable, this so-called data reduction is 
one of the advantages of PCA because we assume that the information contained in the residuals is “noise” 
and thus not biologically relevant. By eliminating that noise, it is easier to interpret the data. The maximum 
number of scores and loadings vectors is equivalent to either the number of total observations in the data 
matrix or the total number of variables, whichever is fewer. If all principal components are included, then the 
residuals matrix E will be 0 because all of the information in the original data set is retained.

The scores matrix (T) contains the projection (or coordinates) for each observation in the data matrix 
along each principal component. The first vector of the scores matrix (t1) contains the coordinates on princi-
pal component 1, the second scores vector (t2) contains the coordinates on principal component 2, and so on. 
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By replotting  the samples using these coordinates, it is possible to see how the different samples relate to 
each other in principal component space. The distance between samples is directly related to their similarity: 
samples that map closely together are more similar than samples that are far apart.

The loadings matrix (P) contains loadings vectors that are linear combinations of the weights (or influ-
ence) of each of the original variables that define the principal component. The loadings can be plotted in 
a lower dimensional space (i.e., principal component 1 versus principal component 2), depending on the 
number of components used in the model. This is sometimes referred to as a map of variables. Importantly, 
by plotting the scores and loadings together in principal component space, it is possible to see how they relate 
to each other.

Scores and loadings vectors are calculated iteratively using a search algorithm. There are several soft-
ware programs available (Table 4.1) that will implement PCA and most of them use the Nonlinear Iterative 
Partial Least Squares (NIPALS) algorithm to calculate principal components. Briefly, the algorithm itera-
tively searches for a direction in the data space that captures the maximal variance for all the variables in 
the starting data set, which is the first loadings vector. Once the first loadings vector is identified, the cor-
responding scores vector is calculated by projecting the data set onto the loadings vector. The result is that 
each observation in the data matrix is now represented by a single value on principal component 1, providing 
a one-dimensional approximation of the data matrix. Together, the first scores–loadings vector pair identifies 
the first principal component and is equivalent to selecting the eigenvector with the largest eigenvalue in the 
covariance matrix.

Eigenvectors must be orthogonal to each other, meaning that the second eigenvector is linearly inde-
pendent of the first. The same constraint is placed on the second loadings vector, such that no information 
about the data is captured in more than one principal component. This is done mathematically by subtract-
ing out the variance that was captured in the first principal component, which is equivalent to consider-
ing the residuals matrix E. The search for the second loadings vector starts with the “leftover” variance 
contained in E and identifies the direction that captures the maximum variance contained in this residual 
data set.

4.3.4 �V ariance explained and choosing principal components

By definition, the first principal component will capture the highest fraction of variance in the data set, 
and each subsequent principal component will capture a smaller fraction of the variance. Principal compo-
nents can be iteratively calculated up to the number of observations or variables in the data set (whichever 
is smaller) until 100% of the variance is accounted for. However, one of the advantages of PCA is the abil-
ity to discard information in the data set that is not meaningful. For biological data matrices, the residual 
information captured by principal components usually drops off quickly, and often only the first two to three 
principal components are retained.

One approach to objectively identify which principal components likely contain meaningful information 
is to use a resampling technique called cross validation, in which the data are separated into a training set 
(the data set used to build or train the model) and a test set (data that was withheld when training the model 
that can be used to test the model). In this method, PCA is performed on a data matrix in which a single 

Table 4.1  Useful software for PCA, PLSR, and PLSDA implementation

Software Analysis Variable selection

Matlab (Mathworks) PCA, PLSR LASSO, VIP

Eigenvector Solo (Eigenvector 

Research)

PCA, PLSR, PLSDA VIP

Eigenvector PLS_Toolbox 

extension for Matlab 

(Eigenvector Research)

PCA, PLSR, PLSDA VIP

SIMPCA (Umetrics) PCA, PLSR, PLSDA VIP
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experimental sample (row) or a subset of samples of the original data set has been removed (i.e., the training 
set). The resulting PCA model is then used to estimate the values of the independent variables in the excluded 
sample(s) (i.e., the test set). A popular version of cross validation is the jackknife (also referred to as “leave 
one out” cross validation). In this cross-validation technique, each sample is dropped from the full data set 
in turn, with the remaining observations used to build the PCA model, until all combinations have been 
performed. The predicted observations are stored in a test matrix, Xtest.

It is possible to evaluate the quality of the PCA model by comparing the original data matrix X to the test 
matrix Xtest. A common metric used to make this evaluation is the predicted residual sum of squares (PRESS):

	

=PRESS (m) (xij – xij   )2test

i=1 j=1

k l

	

for a data matrix with k independent variables (columns) and l samples (rows) and for a PCA model with m 
principal components retained. A smaller PRESS value indicates a better quality model for the estimation of 
new data.

Although adding a principal component will always increase the total amount of variance captured by 
the model for the entire data set, adding a principal component will not always improve the cross-validation 
predictions. Thus, principal components can be retained until they start to increase error in the predictions 
(e.g., increase the PRESS value). The simplest approach is to stop adding components when the PRESS values 
starts to increase.

The appropriate size of the data subset to remove during cross validation is dependent on the number 
of samples available and organization of the data. For a small number of samples, the jackknife cross-
validation technique described above may be most appropriate. In larger data sets, it is usually recom-
mended to exclude larger subsets during cross validation to get a more thorough understanding of model 
performance on unknown data.

In the text that follows we continue with a practical discussion of PCA implemented on immune data, 
using the CD8+ T cell study we began with above.

4.4 � EXAMPLE 1: PCA TO DISCOVER COMBINATORIAL 
PROTEIN RESSION THAT DISTINGUISHES CD8+ T CELL 
PHENOTYPES [1]

4.4.1 � Biological question

CD8+ T cells can be classified into distinct differentiation states based on the presence and/or absence of 
surface markers, but little is known about the functions associated with each state (e.g., which cytokines they 
can produce or their potential for cytotoxicity). This study used mass cytometry (also called cytometry by 
time-of-flight, or CyTOF) to measure functional and phenotypic markers simultaneously on single cells. The 
researchers used a PCA model to determine if different stages of CD8+ T cell differentiation could be clas-
sified based on combinations of phenotypic and functional markers. They further asked if antigen-specific 
cells occupy T cell niches that can be defined based on combinations of phenotypic and functional markers.

4.4.2 �D ata organization

The data were collected by CyTOF. The data set consisted of 25 phenotypic and functional markers measured 
in single CD8+ T cells isolated from human PBMCs and stimulated with PMA+ionomycin for three hours. 
The data matrix X was an m x n matrix of m cells (>1000 “observations”) and n = 25 functional and pheno-
typic markers. The functional and phenotypic markers were given binary classifications of “on” (xn = 1) or “off” 
(xn = 0) based on background thresholds so that the final matrix contained only ones and zeros.
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4.4.3 �P reprocessing

Because the data were given binary classifications, all the variables had the same dynamic range and therefore 
data preprocessing was not necessary.

4.4.4 �M odel refinement

The first two principal components accounted for 50% of the variation in the single-cell data; the third com-
ponent covered an additional 10% (for 60% cumulative variance explained). The authors chose to include 
only the first three principal components based on the qualitative judgment that the remaining principal 
components did not show any informative biological patterns.

4.4.5 �C ross validation

No formal cross validation was performed in this study.

4.4.6 �I nterpretation of results

The principal components were able to classify CD8+ T cells based on differentiation state. PC1 classified 
naïve versus differentiated T cells. PC2 tracked differentiated state (from TCM to TEM to TSLEC). PC3 further 
segregated variation within the central memory compartment. Interestingly, the distribution of cells within 
the principal component space was the same across patients, suggesting that the pattern of functional and 
phenotypic markers used to classify the cells were conserved across individuals.

The conserved pattern in principal component space allowed the researchers to additionally label virus-
specific tetramers to visualize the location of virus-specific cells within the continuum of CD8+ T cell com-
partments. They found that T cells specific for cytomegalovirus (CMV), Epstein-Barr virus (EBV), and 
influenza occupied distinct phenotypic and functional niches. The authors note that the different phenotypes 
likely reflect characteristics of the pathogen. Influenza infections are episodic, and were associated with TCM-
like phenotypes. In contrast EBV and CMV are chronic infections and thus occupy more TEM-like pheno-
types and late state effect (TSLE)-like phenotypes, respectively.

4.4.7 �L imitations

The PCA results were benchmarked against standard surface marker classification of the CD8+ T cell dif-
ferentiation states. This type of verification is useful but will not always be possible with biological data sets. 
A limitation of this verification was the fact that it was made using markers that were also included in the 
PCA model. It would have been interesting to see, for example, to what extent functional markers alone could 
differentiate between CD8+ T cell differentiation states. By repeating PCA with subsets of the original data 
set, it would be possible to identify minimal requirements for CD8+ T cell classification that did not include 
the classical surface markers.

4.5 � EXTENSIONS OF PCA: PLSDA AND PLSR – AN OVERVIEW

Partial least squares discriminant analysis (PLSDA) and partial least squares regression (PLSR) can be con-
sidered extensions of PCA because they identify variation or “super” variables (principal components) in the 
data matrix (X, described above). However, in contrast to PCA, which identifies principal components in an 
unsupervised manner (i.e., no expected output is specified), PLSDA and PLSR are supervised methods that 
identify principal components from a proposed relationship. Both methods require defining a dependent 
output or response variable block (Y), and then finding the principal components that relate the variation in 
the independent matrix of variables (X) to the dependent variables (Y). For this reason PLSR and PLSDA can 



60  Using data to guide model construction

be especially useful for hypothesis-driven biological research, as the result is linear combinations of experi-
mental measurements associated with a known biological function or state. For example, PLSR or PLSDA 
could be used to identify multivariate combinations of cytokines, antibodies, or transcriptional events (X) 
associated with a known cell type or disease state (Y).

All information presented above about PCA also applies to PLSDA and PLSR. The added extension is that 
PLSDA and PLSR provide information about the relationship between the data matrix X and a known label 
or response vector, Y. For PLSDA, Y contains known class or label information for each sample, which cor-
responds to each row in the data matrix X. For PLSR, Y contains additional biological measurements that are 
hypothesized to depend on the variables in the data matrix X. Y is often a single column vector (i.e., only one 
response variable), but it can also be a matrix (with multiple columns) in situations for which there are several 
response variables of interest. The most important difference between PLSDA and PLSR can be summarized 
as follows: for PLSDA, Y is a discrete class; for PLSR, Y is a continuous variable.

4.6 � PLSR AND PLSDA: IMPLEMENTATION

4.6.1 �T he data matrix: Defining dependent and independent 
blocks

Both PLSR and PLSDA are performed on two data matrices: an independent data matrix X and a dependent 
data matrix Y. As in PCA, X contains the experimental observations in rows and the variables in columns. 
For example, identical to PCA implementation described above, consider a data matrix of 12 rows (samples: 
three donors by four treatments) by 30 columns (three time point entries for 10 cytokines). Implementation 
of PLSDA requires an additional response vector (Y) that includes the treatment class for each sample (12 
rows and 1 column). The exact input format for Y may depend on the software used to perform the analysis. 
In some cases, Y input may be accepted as a text label, or in some cases a vector of discrete numbers may be 
required. Implementation of PLSR requires a response vector or matrix Y that contains continuous cell mea-
surements. For example, if quantitative measures of cell migration and cell proliferation are hypothesized to 
be dependent on the independent variables and thus are recorded at a single time point for all samples, then 
the independent Y matrix would consist of 24 data points (12 samples by two response measurements).

4.6.2 �P reprocessing the data

It is important to preprocess the X data matrix for PLSR and PLSDA for the same reasons as described above 
for PCA in Section 4.3.2. If Y is a single column vector, it often does not need pre-processing, especially in 
the case of PLSDA, where Y is a discrete class. However when Y is a matrix containing multiple responses, 
preprocessing is usually necessary and can be performed similarly as is on the X data matrix.

4.6.3 �S cores and loadings

Above we described how PCA identifies principal components by decomposing (or factoring) the indepen-
dent data matrix X into a structure part and a noise part:

	 X TP ET= + 	

T is the matrix of scores for the observations in X and PT is the matrix of loadings for the variables in X. 
Similarly, the dependent data matrix Y is factored in an analogous manner:

	 Y UQ FT= +
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U contains the scores for the observations in Y, and QT contains the loadings for the variables in Y. To 
enforce the linear relationship between the independent and dependent blocks, the Y factorization is forced 
to use a multiple of the scores vector of X. The scores vectors for principal components are related by:

	 U BT=

The scores matrix for Y can now be expressed as a multiple of the scores matrix of X:

	 Y TBQ FT= +

The scores and loadings for X and Y are calculated using an iterative algorithm similar to that described 
above for PCA. However, rather than calculating the scores and loadings vectors independently for X and Y, 
the scores vectors are exchanged within the algorithm to strengthen the relationship between the X scores 
matrix U and the Y scores matrix T. As a result, the loadings vectors capture the covariance between X and 
Y rather than the overall variance in X. The identification of principal components that predict a relationship 
between X and Y is the key difference between PLSDA and PLSR as compared to PCA. To emphasize this 
important difference, the “super” variables identified by PLSR and PLSDA are sometimes referred to as latent 
variables rather than principal components. Similar to PCA, we are typically only interested in the first two 
or three score–loading vector pairs because these usually capture most of the covariance between X and Y. 
The remaining information collected in the residuals matrices (E and F) is typically experimental or biologi-
cal noise. How to quantitatively determine the appropriate number of latent variables to use in a PLS model 
is described in the next section.

One of the most important advantages of PLS models is that they can be used to predict dependent 
response variables from the independent variables in X, including responses that were not included in the 
original training set (i.e., the data set that was used to build the model). Predictions are made using the pro-
posed relationship between X and Y:

	 Y XB FPLS= +

The matrix of regression coefficients BPLS is estimated as a function of PT (loadings of X) and QT (loadings 
of Y).

4.6.4 �C hoosing latent variables and assessment of model 
quality

By definition, the first latent variable in PLS models will capture the variance that best relates X and Y, the 
second latent variable will capture the second most variance, etc. As in PCA, latent variables can be iteratively 
calculated up to the number of variables in the data set, at which point 100% of the relationship between X 
and Y will be captured. However, usually the goal is to limit the number of latent variables used in order to 
improve predictive power of the model and minimize the contribution of noise. Just as in PCA, one approach 
to objectively identify which latent variables contain meaningful information is to use cross validation.

Cross validation for PLSDA and PLSR can be performed by iteratively splitting data into training sets 
and test sets as described above for PCA. Model predictions of the dependent variables (YPredicted) are then 
compared to actual values of the dependent variables in Y. The ability to predict Y for training data and test 
data is often reported as the calibration error and cross-validation error, respectively. For PLSDA models, 
these errors are calculated as the fraction of samples that were incorrectly predicted by the model during 
training and testing. Analogous measures of model predictive ability for PLSR models are R2, which indi-
cates how well the model is able to reproduce the training data set, and Q2, which indicates how well the 
model can reproduce the test data set. R2 is computed based on the residual sum of squares (RSS) of YPredicted 
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for the training data and the total sum of squares (SStot) (proportional to the total variance of the training 
data):

	
= 1 − (training data)R2 RSS

SStot

Q2 is computed from the PRESS (predicted residual sum of squares) described above in Section 4.3.4 for 
PCA that is obtained during cross validation using a method such as jackknifing:

	
= 1 − (test data)Q 2

PRESS
SStot

An R2 close to 1 indicates that a PLSR model fits the existing data well, while a Q2 value close to 1 indicates 
that the model is expected to perform well on unknown data. Although adding latent variables will always 
increase the calibration accuracy (R2) of the model, adding latent variables will not always improve the cross-
validation predictions (Q2). The reason for this minimum is that some of the information contained in the 
data set is noise (i.e., not correlated to the dependent block) and therefore by excluding this information, the 
predictive capability of the model is improved. The optimal number of latent variables to include in a PLSR 
or PLSDA model can be determined by plotting calibration and cross-validation error (or 1 − R2 and 1 − Q2) 
for each model as latent variables are added, and selecting the model that minimizes cross-validation error 
(Figure 4.2).

For binary classification (a PLSDA model with only two classes), a receiver operating characteristic (ROC) 
curve could additionally be used to assess predictive performance of the model. An ROC curve is created 
by plotting the true positive rate (sensitivity) against the false positive rate (1-specificity). For example, if a 
PLSDA model is being used to predict the presence of an infection (Y = “infected” or “not infected”), “true 
positives” would be samples that are correctly predicted by the model as “infected”. The true positive rate 
(specificity) is then computed as the total number of true positives divided by the total number of infected 
individuals. “Uninfected” individuals who were incorrectly predicted to be “infected” would be considered 
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Figure 4.2  Graphical illustration of how calibration and cross validation may be used to select the appropriate 
number of latent variables for a PLSDA model. In this example, a model with five latent variables had the low-
est cross-validation and calibration error (circle), and represents the model with the best expected predictive 
power. A similar figure with R2 and Q2 values plotted on the Y axis could be used to select the number of latent 
variables to be used in a PLSR model.
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“false positives”. The false positive rate is then computed as the total number of false positives divided by the 
total number of uninfected individuals (1-specificity).

4.6.5 �M odel refinement and variable selection methods

Even when calibration and cross validation are used to select the appropriate number of latent variables for a 
PLSDA or PLSR model, a large difference in calibration and cross-validation error (or R2 and Q2 values) may 
still remain. This indicates a model is “over-fit” (see Figure 4.2 above) and some independent variables should 
be removed to eliminate noise and improve cross-validation accuracy. There are several variable selection 
methods that can be used to eliminate variables that are not useful in a PLSR or PLSDA model. One commonly 
used approach computes a Variable Importance Projection (VIP) score for each variable. Variables with VIP 
scores less than 1 can be considered less important and removed from the model. Another method for variable 
selection is the least absolute shrinkage and selection operator (LASSO) method, which is especially useful for 
situations with hundreds or thousands of independent variables. Variable selection can greatly improve cross-
validation accuracy (Q2) while maintaining calibration accuracy (R2). Both VIP variable selection and LASSO 
can be implemented using software packages that perform PLSDA and PLSR (Table 4.1). Detailed mathemati-
cal descriptions of each method can be found elsewhere [3].

In the text that follows we include a practical discussion of published studies that used PLSDA and PLSR 
to gain new insight into immune processes.

4.7 � EXAMPLE 2: PLSDA TO IDENTIFY CYTOKINE-CHEMOKINE 
NETWORK CHANGES IN THE IMMUNE RESPONSES� OF 
HIV-INFECTED INDIVIDUALS [4]

4.7.1 � Biological question

In this example, PLSDA was used to gain new mechanistic insight into altered cytokine communication 
networks in HIV-infected individuals. Susceptibility to opportunistic infection and cancer indicates that the 
immune response of HIV-infected individuals is clearly impaired, but it has been difficult to assess the rela-
tive importance of many different immune cell alterations that have been reported. This study used a PLSDA 
model to determine how cytokine response profiles differed in HIV-infected individuals compared to healthy 
individuals, and which alterations could be explained by the loss of CD4+ T cell numbers that occurs during 
HIV infection.

4.7.2 �D ata organization

Cytokine responses of cultured, peripheral blood mononuclear cells (PBMCs) were compared between seven 
HIV-infected donors, five healthy donors, and five healthy donors for which CD4+ T cells had been depleted 
to match levels in the HIV-infected group, for a total of 17 samples distributed among three classifications. 
The measured variables included 16 cytokines measured at 6 and 72 hours in the supernatant from cultured 
PBMCs following stimulation with LPS, R848, or anti CD3/28 beads. Three different PLSDA models (one for 
each stimulus) were created to compare changes in networks of HIV infected individuals to those in healthy 
individuals and in healthy individuals where CD4+ T cells were depleted experimentally.

Independent Data Matrix X: 32 cytokine measurements (16 measured at two time points), measured from 
PBMCs from healthy individuals, HIV-infected individuals, and from healthy individuals in which CD4+ T 
cells had been depleted experimentally. The resulting X data matrix was 17 rows by 32 columns because each 
stimulation was analyzed separately.

Dependent Variable Y: Each sample was labelled according to class: HIV, CD4+ T cell depleted, or healthy. 
The result was a 17 x 1 matrix. Three separate models were made, one for each stimulus (LPS, R848, and CD3/28).
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4.7.3 �P reprocessing

In this model it was important to normalize the data to account for: (1) cytokines with absolute concentra-
tions that were higher than other cytokines and (2) cytokines with a greater range of concentration values 
than other cytokines. In this case mean centering (subtracting the mean) was used to address (1) and variance 
scaling (dividing by the standard deviation) was used to address (2).

4.7.4 �C ross validation

Cross validation was performed by excluding ~20% of the data during model training, and then testing the 
model on the excluded data. This was done iteratively until each sample was excluded at least once, although 
some samples were excluded more than once. Finally, cross-validation error was computed by averaging the 
error computed for the test data predictions from all iterations of model training.

4.7.5 �M odel refinement and feature selection

After cross validation and calibration were performed, it was noted that cross-validation error was high, 
while calibration error was low. This indicated that some of the cytokine measurements in the PLSDA models 
did not contribute to classification, and models were over-fit. Variable Importance Projection (VIP) scores 
computed for each cytokine measurement were used to determine which cytokines were most useful for 
differentiating the classes of each PLSDA model. Cytokine measurements were eliminated from the model 
if they had a VIP Score less than one. New models created using only VIP cytokines had much lower cross-
validation error, and were therefore more likely to perform well on unknown data. A final model with two 
latent variables was selected as these had the lowest calibration and cross-validation errors.

4.7.6 �I nterpretation of results

Model results indicated that the immune response of HIV-infected individuals to a T cell stimulus were 
more similar to healthy responses than to responses from PBMCs where CD4+ T cells had been depleted 
experimentally. Loadings on the critical latent variable in this model showed that PBMCs with CD4+ T 
cells depleted lost secretion of many adaptive cytokines (including IL-2, IFN-γ, and IL-4), whereas HIV-
infected individuals were able to maintain secretion of these cytokines (even though CD4+ T cell numbers 
were matched between HIV and CD4+ depleted samples). Overall this suggested that the remaining T cells 
in HIV-infected individuals were be able to compensate for the lost T cells by compensatory secretion of 
adaptive cytokines. This was confirmed using additional analytical methods and follow-up flow cytometry 
experiments guided by model results. In contrast to adaptive responses, the PLSDA models of innate stimuli 
indicated that innate immune responses of HIV-infected individuals were different than both healthy and 
CD4+ depleted responses and loadings on latent variable 1 indicated this difference was characterized by 
lower secretion of a number of cytokines, including IFN-γ secretion at six hours. Additional computational 
and experimental analyses motivated by the PLSDA model results led to the discovery that NK-cells were 
responsible for this critical loss.

4.7.7 �V ariations on the PLSDA model

With the large amount of data collected, it is often possible to ask additional questions by rearranging which 
data are included in the independent and dependent blocks. With the data collected in this study, the authors 
also considered how early alterations in cytokine secretion from HIV-infected individuals influence cytokine 
secretion at later time points. To do this, the independent data matrix (X) was limited to the 16 cytokine mea-
surements measured at the late time point (72 hours) across the three donor groups. The dependent matrix (Y) 
of class labels remained the same (HIV-infected, CD4+ T cell-depleted, or healthy). The PLSDA models of the 
innate immune response indicated that HIV responses were different from healthy and CD4+ T cell-depleted 
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responses at 72 hours. Combined with the main results described above, this observation supported the hypoth-
esis that IFN-γ secretion by NK cells, a major early alteration in HIV, could be responsible for changes in the 
cytokine secretion profiles at 72 hours. In support of this hypothesis, there was a significant Pearson correla-
tion between 6 h IFN-γ secretion and scores on LV1 in the model built from only the 72-hour data. Follow-up 
experiments confirmed that blocking IFN-γ secretion for six hours in healthy PBMCs altered cytokine secretion 
profiles at 72 hours to more closely resemble HIV-infected cytokine secretion profiles at that time point.

4.7.8 �L imitations

A limitation of this study was the small sample size (n = 5 healthy, n = 5 CD4+ dep, n = 7 HIV), which resulted 
from difficulty obtaining PBMCs from HIV-infected individuals and the cost of multiplex cytokine measure-
ments. While the small sample size precluded development of a predictive or diagnostic model based on these 
data, results still provided new insights into cytokine network alterations in a disease state.

4.8 � EXAMPLE 3: PLSR TO PREDICT CYTOTOXIC T CELL AGE FROM 
STATIC AND DYNAMIC BIOMARKERS� [5]

4.8.1 Biological question

Adoptive T cell therapy for cancer patients involves ex vivo expansion of autologous CD8+ T cells for tumor 
recognition. One major hurdle in this process is ex vivo generation of high-quality T cell clones without 
senescence and loss of function. This study built a PLSR model from high-throughput measurements of cell 
surface markers and dynamic signaling events to determine if these multivariate biomarkers could be used 
to predict T cell age and senescence.

4.8.2 �D ata organization

CD8+ T cells were isolated from PBMCs collected from four different donors and maintained in culture for 
different lengths of time (four to five experiments for each donor) for a total of 18 observations (rows). The 
following data were collected for each observation:

●● Flow cytometry measurements, including surface markers, measurements of cell morphology, and sig-
naling proteins. Data included mean intensity, coefficient of variation, and fraction (50 data points).

●● Dynamic signaling measurements, including phosphorylation status of six signaling proteins at eight 
time points measured via a Luminex assay (48 data points).

●● Derivatives of the signaling dynamics, calculated by taking the slopes of the dynamic phosphorylation 
measurements between each time point (42 data points). This is an example of how additional indepen-
dent variables can be generated from raw data.

●● Number of days in culture and population doubling times for each sample.

Independent Data Matrix (X): 18 observations (rows) of 140 independent variables (columns) in CD8+ 
T cells, including surface markers, cell morphology, intracellular signaling proteins, and derivatives of the 
signaling dynamics.

Dependent Variable (Y): Number of days in cell culture or number of population doublings for each 
observation.

4.8.3 �P reprocessing

Preprocessing of data in this study was especially important because different types of data, from different 
experimental assays were combined in the data matrix X. Here mean centering and variance scaling were 
used in each of the models to normalize absolute abundance and variance range, respectively.
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4.8.4 �M odel refinement and cross validation

Variable Importance Projection (VIP) scores were used to eliminate variables that did not contribute to the 
model or had high variability. Overall this resulted in pruning 69 of the original variables, for a final data set 
with 71 variables. A three-component model had minimum R2 and Q2 values of 0.96 and 0.78, respectively, 
and was chosen as the best model to fit the data.

4.8.5 �I nterpretation of results

A three-component PLSR model was able to predict CD8+ T days in culture and population doublings with 
high accuracy. Individual independent variables and hierarchical clustering approaches were not useful for 
differentiating cells based on age. Overall, this result suggests that a PLSR model could be valuable for pre-
dicting CD8+ T cell age in adoptive T cell therapy applications.

4.8.6 �V ariations on the PLSR model

The authors of this study asked an additional question by rearranging the data in the independent and 
dependent blocks. Specifically, they considered if dynamic signaling events could predict cell surface marker 
expression by dividing the independent data matrix X into independent and dependent blocks and posing a 
new hypothetical relationship. In this PLSR model, the independent data matrix X consisted of only dynamic 
signaling events. The dependent matrix Y included CD27 and CD28 surface marker expression, measure-
ments that were originally included in the X matrix but were now considered to be the response variable. This 
PLSR model using only signaling measurements was able to predict CD27 and CD28 surface marker expres-
sion with R2 values ranging from 0.74 to 0.91. In contrast, a PLSR model built to predict signaling phosphory-
lation measurements from surface receptor expression data performed poorly (R2 = 0.27 and Q2 = 0.1). This 
suggested that signaling information may be predictive, or upstream of surface marker expression in CD8+ T 
cells, but surface marker expression is not directly correlated to T cell receptor signaling.

4.8.7 �C ommon pitfalls for applying PLSR methods

While PLS methods are useful tools for analyzing large data sets, there are several misconceptions and pit-
falls associated with their use. One common pitfall is to over fit PLS models, where low calibration error (or 
high R2 values) could misleadingly indicate clear differences between groups and adequate predictive power. 
This pitfall can be avoided by assessing model performance with cross validation, or (preferably) on new, 
unknown samples. If cross-validation performance is poor, feature selection techniques discussed above can 
aid in removing noisy parameters to improve Q2 and cross-validation accuracy.

Another important consideration is the organization of data for cross validation, especially with smaller 
sample sizes. The organization of cross-validation folds, or how samples are assigned to training sets versus 
test sets, can lead to large changes in model predictions in some cases and thus affect the estimation of predic-
tive capabilities. In this case a PLS model trained on one subset of the data could generate considerably dif-
ferent R2 and Q2 values than a PLS model trained with another subset of the same data. This problem can be 
addressed by (1) verifying that samples are equally represented in cross-validation folds and (2) obtaining an 
average Q2 value from iterative cross validation performed after reorganization of training and test set folds.

As discussed above, appropriate data preprocessing and normalization prior to analysis is also neces-
sary, especially when using PLS methods where both normalization of the independent data matrix (X) and 
the dependent matrix (Y) must be considered. Finally, in using and interpreting PLS results, it is impera-
tive to remember that PLS and similar methods only identify statistically significant associations between 
measured parameters. While these relationships are valuable for generating new hypotheses for biological 
mechanisms, causative relationships can only be confirmed through follow-up experiments. Likewise true 
diagnostic power can only be assessed by using the PLS model to make predictions about new, unknown 
samples coupled with an independent evaluation of the accuracy of the model predictions.
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4.9 � DISADVANTAGES OF PCA AND PLS AND ALTERNATIVE 
STRATEGIES

There are a number of critical assumptions underlying PCA and PLS that do not always apply to biologi-
cal data. The most critical assumption is that the independent variables are linearly related to each other 
and, in the case of PLSDA and PLSR, to the dependent response variables. There are many known biological 
relationships that are non-linear and these relationships may be poorly represented by linear dimensionality 
reduction. Another problem related to the linearity assumption is that PCA is not good at identifying and 
preserving nonlinear local structures in the data in the low-dimensional space. For example, imagine that 
over time, a biological temporal gene expression pattern follows a spiral structure. If PCA is applied to this 
sample, the temporal “order” of these points along the spiral (and therefore important biological information) 
will be lost.

A very simple way of incorporating nonlinear relationships between independent and dependent variables 
into PLSDA and PLSR is to calculate nonlinear forms of the original measurements (squared terms, loga-
rithms of terms, etc.) and add these to the data matrix of independent variables [6]. If higher-order relation-
ships exist between the independent and dependent variables, then these nonlinear terms will be relatively 
important in the loadings vector.

There are also many nonlinear dimensionality reduction techniques that have been developed. One exam-
ple is a technique called diffusion maps [7]. Diffusion maps use a “random-walk” approach in which the 
algorithm randomly explores directions in the high-dimensional Euclidean space to find all possible paths 
between any pair of samples. Using this approach it is possible to discover complex, nonlinear geometric 
structures and construct coordinates called diffusion maps that efficient represent these structures in a lower 
dimensional space. Diffusion maps built from multi-dimensional single-cell data have been used to identify 
the known stages of T-cell development in the thymus, including a non-linear bifurcation point that is associ-
ated with two different developmental pathways [8].

Another population nonlinear dimensionality reduction is t-distributed stochastic neighbor embed-
ding (t-SNE) [9]. Again starting from the coordinates of samples in high-dimensional space, t-SNE uses the 
Euclidean distance between points to calculate the probability that these points are neighbors, and then these 
neighbor relationships are preserved in the low-dimensional space. t-SNE can identify both global structures, 
such as clusters, and local structures in the data matrix. Unlike PCA, t-SNE does not produce a model that 
can predict the coordinates of new data points in the low-dimensional space and is thus is only a visualiza-
tion technique. t-SNE is a very popular technique for visualizing structures in high-dimensional single-cell 
transcriptomic and proteomic data [10].

4.10 � DISCUSSION AND FUTURE DIRECTIONS

As illustrated in this chapter, PCA and associated data-driven modeling methods provide a means to infer 
systems-level interactions from high-throughput, multiplexed experimental data sets that are increasingly 
common in immunology research. PCA and PLS methods are well established, but discovering novel ways to 
use them to link disparate immunology data sets across temporal and physiological scales presents exciting 
opportunities for discovery. In closing, we discuss several distinct advantages of PCA, PLSR, and PLSDA that 
are especially relevant to immunology research, and briefly highlight studies that illustrate each advantage.

4.10.1 �L inking biological events across physiological scales

One advantage of data-driven modeling is that these approaches can associate molecular events to tissue-
level phenotypes or cell behaviors. It is now clear that immune behavior and disease pathogenesis usually 
arise from complex networks of molecular and cellular interactions, rather than simple changes in individual 
protein levels or states. This presents two challenges to immunology research: (1) identifying key changes in 
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complex networks of molecular and cellular interactions and (2) linking these multivariate interactions to 
events at different physiological scales (i.e., tissue-level behavior that directly contributes to disease states). 
PLSR and PLSDA models have the ability to address both of these challenges by identifying critical network-
level events in large data matrices (X), and then linking these events to important disease-relevant behavior 
at another physiological scale (Y). One example study used PLSDA models to find molecular signaling events 
underlying in vivo tissue phenotypes in an animal model of inflammatory bowel disease [11]. Results identi-
fied a signature of proteins in the ERK signaling pathway as key regulators of spatial and temporal differ-
ences in TNF-induced apoptosis. In this case the PLSDA approach was necessary to identify multivariate 
relationships between ERK signaling events and also to link them to in vivo tissue phenotypes of apoptosis 
and proliferation.

4.10.2 �I mproved diagnosis or classification of immune disease 
states

The assessment of immune disease state or progression is critical for effective health care, but accurate assess-
ments have been difficult to attain using individual immune parameters. PCA and other data-driven mod-
eling approaches address this limitation by using multivariate parameter profiles, rather than individual 
parameters, to more accurately differentiate between disease progression states. Such a clinical classification 
can be useful even without providing insight into the underlying mechanisms. The PLSR example reviewed in 
this text is an illustration of this application [5]. A PLSR model to predict CD8+ T cell age from intracellular 
signaling measurements is of high value for clinical applications of cell selection for adoptive T cell therapy, 
even though mechanistic insight was not the focus of the study.

4.10.3 �C onnecting immune signaling events over time

Molecular and protein signaling events in immune cells evolve dynamically to produce cell and tissue 
phenotypes and disease-related changes. Given experimental data from multiple time points, it is often 
difficult to identify dynamic network-level changes that are related to each other in time. PCA, PLSR, and 
PLSDA provide a means to do this by integrating data across time points that best differentiate based on 
disease state or treatment. One illustration of this is the PLSDA example outlined in this chapter, in which 
alterations in cytokine communication networks of HIV-infected individual were linked to each other 
in time to identify events that were especially important to development of the altered dynamic immune 
response [4].

4.10.4 �A bility to integrate diverse data sets

Given the wide range of high-throughput experimental assays now available to measure immune param-
eters, it is often difficult to relate measurements made in one assay to those of another assay. PCA and 
associated approaches can be used to identify multivariate relationships between immune parameters 
measured in different experimental assays. For example, antibody titers and neutralization measurements 
have traditionally been used to identify successful vaccines, however neither has been useful in develop-
ing an effective HIV vaccine, or in differentiating HIV vaccine regimens. One example study found that a 
PLSDA model of combined measurements of antibody titer, neutralization, and other Fc-mediated activity 
assay measurements was able to differentiate four HIV vaccine regimens with high accuracy, and addition-
ally pinpointed critical relationships between antibody properties measured in different assays that were 
associated with different regimens and correlative of protection [12]. Previous studies that compartmen-
talized evaluations of antibody measurements made in different experimental assays were unable to make 
this advance.
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5

An introduction to rule-based modeling 
of immune receptor signaling

JOHN A.P. SEKAR AND JAMES R. FAEDER

5.1 � INTRODUCTION

It is well known that cells process external and internal signals through chemical interactions (Lodish et al., 
2008; Nelson and Cox, 2013). Cells that constitute the immune system can be of many different types, such as 
antigen presenting cell, T-cell, B-cell, mast cell, etc. Each of these cells can have different functions, such as 
adaptive memory or inflammatory response, and the type and functionality of the cell is largely determined 
by the type and number of receptor molecules on the cell surface and the specific intracellular signaling path-
ways activated by those receptors (Owen et al., 2013). Given a particular biochemical signaling system in a 
particular immune cell, explicitly modeling and simulating kinetic interactions between molecules allows us 
to pose questions about system dynamics under various conditions (Aldridge et al., 2006). A model that reca-
pitulates current experimental data can then be used to predict the results of future experiments and pertur-
bations, and this cycle of model prediction and verification can lead to a better understanding of the system 
and potential clinical applications (Kitano, 2002). The promise of a mechanistic understanding has led to the 
enthusiastic application of chemical kinetics to biochemical signaling systems, but it has been limited by the 
complexity of the systems under consideration (Hlavacek et al., 2003; Borisov et al., 2005). Rule-based model-
ing is an approach to building and simulating chemical kinetic models that addresses this complexity (Sekar 
and Faeder, 2012; Chylek et al., 2013). BioNetGen (Hlavacek et al., 2006; Faeder et al., 2009), Kappa (Danos 
et al., 2007a, 2007b), and Simmune (Meier-Schellersheim et al., 2006; Zhang et al., 2013) are some of the more 
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widely-used rule based frameworks. PySB provides a Python framework for rule-based modeling that uses 
BioNetGen or Kappa to generate models (Lopez et al., 2013). In this chapter, we will explore the origins of 
complexity in macromolecular interactions, show how rule-based modeling can be used to address complex-
ity, and demonstrate the construction of a model in the BioNetGen framework. Open source BioNetGen 
software and documentation are available at http://bionetgen.org. We highly recommend that users start with 
RuleBender (Smith et al., 2012), which is a graphical user interface for BioNetGen that has text highlighting 
and syntax checking as well as interactive visualization and simulation capabilities.

5.2 � ORIGINS OF COMPLEXITY

For this chapter, we will consider a model of signaling from the FcεRI receptor present in mast cells (Faeder 
et al., 2003), which we will refer to as “the FcεRI model.” Degranulation of mast cells and basophils plays an 
important role in allergic immune response and this is initiated by signaling from FcεRI receptors on those 
cells. These receptors recognize the Fc portion of IgE antibodies whose Fab portion binds antigens. The acti-
vating ligand molecule is a single antigen bound to multiple antibodies, thereby providing multiple Fc sites 
to bind FcεRI receptors. When two or more receptors are crosslinked by a ligand, a sequence of binding and 
phosphorylation events on the cytoplasmic side lead to activation of Syk kinase, which subsequently pro-
motes the degranulation response (Siraganian et al., 2010). Faeder et al. (2003) examined the dose response of 
Syk activation to ligand concentration and use four molecule types: a ligand, the FceRI receptor, Lyn kinase, 
and Syk kinase.

The structural assumptions underlying the FcεRI model are summarized in Figure 5.1a. The model con-
siders a bivalent ligand, i.e., one with two Fc sites for the FcεRI receptor. The receptor itself is made up of 
three chains: the α subunit capable of binding ligand, the β subunit capable of binding Lyn, and the γ subunit 
capable of binding Syk. The β and γ subunits have phosphorylation sites present on them, and we assume 
that the functional states for the subunits are “phosphorylated” and “unphosphorylated.” On Lyn kinase, 
we consider two domains: a unique domain U capable of binding unphosphorylated β subunit of receptor 
weakly and an SH2 domain that binds the phosphorylated β subunit strongly. On Syk kinase, we consider 
three domains: a tSH2 domain that binds phosphorylated γ subunit of receptor, a group of phosphorylation 
motifs on the activation loop of the Syk kinase, and another group of phosphorylation motifs present in a 
linker region on Syk. Activation loop phosphorylation is known to activate the kinase activity of Syk, whereas 
linker phosphorylation is presumed to have a modulatory effect. Syk phosphorylated on activation loop can 
be considered the output of this system.

The reaction mechanisms in the model are summarized in Figure 5.1b. A dimer is formed by the bivalent 
ligand crosslinking two receptors. Lyn binds weakly using the U domain, and in the dimer form, it phos-
phorylates the β and γ subunits of the adjacent receptor. The phosphorylated β domain can bind Lyn strongly 
via its SH2 domain, which leads to increased Lyn-dependent phosphorylation. The phosphorylated γ domain 
recruits Syk, and recruited Syk is phosphorylated in two ways: on the activation loop by Lyn recruited to the 
adjacent receptor and on the linker region by Syk recruited to the adjacent receptor. The model makes con-
servative assumptions about how binding processes influence each other, i.e., it assumes that ligand-binding, 
Lyn-binding, and Syk-binding events can happen independent of each other as long as the receptor they bind 
to has the necessary binding site exposed. Similarly, it assumes that Syk binding to receptor happens indepen-
dent of its phosphorylation status. Given additional information, it is possible to modify these assumptions in 
the rule-based model and add context to binding events, but we will use the originally published assumptions 
(Faeder et al., 2003) for the purposes of this chapter.

The independence assumptions lead to many valid combinations of molecules, states, and bonds that can 
coexist, and this leads to a large state space of chemical species, i.e., a large number of unique molecules and 
complexes. This phenomenon is called combinatorial complexity (Hlavacek et al., 2003), and Figure 5.2 shows 
an accounting of the possible species that can form in the FcεRI model given the interactions in the model. 
There are four variants of the free Syk molecule not bound to anything else because of two phosphorylation 
motifs on Syk that can each be phosphorylated or unphosphorylated (2x2). Similarly, there are four variants of 
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free receptor molecule not bound to anything else because of two subunits that can each be phosphorylated or 
unphosphorylated (2x2). All four free receptors can bind Lyn, leading to four receptor-Lyn complexes. Two free 
receptors are γ-phosphorylated and can bind four forms of Syk each, leading to eight receptor-Syk complexes 
(2x4). Similarly, two receptor-Lyn complexes have a phosphorylated γ subunit that can bind four forms of Syk, 
leading to eight receptor-Lyn-Syk complexes (2x4). In total there are 24 different complexes in which there is 
exactly one receptor and zero ligand, which we call monomeric receptor complexes without ligand. By binding 
a free ligand to each of these, we get 24 monomeric receptor complexes with ligand. Dimers, which are formed 
by a ligand crosslinking two monomeric receptor complexes, can be symmetric or asymmetric. On the sym-
metric dimer, the two recruited monomeric receptors are identical, and since there are 24 monomeric receptor 
types, there are also 24 symmetric dimers. On the asymmetric dimer, the two recruited monomeric receptors 
are dissimilar, and there are 276 such dissimilar pairs available (24x23/2), leading to 276 asymmetric dimer 
complexes. In total there are 48 monomeric receptor complexes (24+24) and 300 dimer complexes (24+276). 
Including free ligand, free Lyn, and four forms of free Syk, there are 354 chemical species in the system.

Model state space = 1+1+4+24+24+24+276 = 354

Free syk molecules = 2x2 = 4
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Figure 5.2  Accounting for Molecules and Complexes. In the model, there is one type of free ligand molecule, 
and one type of free Lyn molecule respectively. Because sites can be independently phosphorylated, there 
are four types of free Syk molecules and four types of free receptor molecules respectively. Lyn binding to free 
receptor gives rise to four Rec-Lyn complexes. Syk binding to free receptor leads to eight Rec-Syk complexes. 
Syk binding to Rec-Lyn leads to eight Rec-Lyn-Syk complexes. In total, there are 24 complexes that have one 
receptor to which no ligand is bound, called 24 monomeric receptor complexes. When free ligand binds, this 
leads to 24 ligand-bound monomers. On crosslinked dimers, symmetry between the two recruited monomeric 
receptors leads to 24 symmetric dimers. When the recruited monomeric receptors are asymmetric, there are 
276 combinations that are possible, leading to 276 asymmetric dimers.
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5.3 � MOLECULES IN BIONETGEN ARE STRUCTURED OBJECTS 
THAT CAN COMBINE TO FORM COMPLEXES

Rule-based models can handle the combinatorics of large chemical state spaces automatically without man-
ual curation. In the standard reaction formalism, each chemical species needs to have a unique label assigned 
by the modeler, but in the rule-based formalism, each chemical species is a structured graph that can be 
synthesized by a formal algorithm subject to the rules specified in the model. The structural building blocks 
for chemical species in a BioNetGen model are molecules, components of molecules, internal states of com-
ponents, and bonds between pairs of components. The molecule types block in a BioNetGen model file 
specifies the types of molecules, components, and internal states.

begin molecule types
	 Lig(fc,fc)
	 Rec(alpha,beta~0~P,gamma~0~P)
	 Lyn(U,SH2)
	 Syk(tSH2,linker~0~P,aloop~0~P)
end molecule types

Here, Lig, Rec, Lyn, and Syk refer to the names of the types of molecules. The number and type of each 
molecular component is specified within brackets. The ligand Lig has two components named fc refer-
ring to binding sites for receptor. Since both sites are named identically, any attribute applicable to fc any-
where in the model will be equivalently applied to both sites on Lig. The receptor Rec has three components 
alpha, beta, and gamma, and the ~{string} notation denotes the internal states available to beta and 
gamma components, which are ~0 representing unphosphorylated and ~P representing phosphorylated 
respectively. Lyn is defined to have two components U and SH2. Syk is defined to have three components 
tSH2, linker, and aloop, with linker and aloop being allowed to take unphosphorylated and phos-
phorylated states.

All molecular variants that exist in the model are derived from permutations of internal states defined 
in the molecule types block. In this case, Lyn has one only one variant, Lyn(U,SH2), whereas the 
receptor has four possible variants, Rec(alpha,beta~0,gamma~0), Rec(alpha,beta~0,gamma~P), 
Rec(alpha,beta~P,gamma~0), and Rec(alpha,beta~P,gamma~P). Complexes are synthesized by 
joining molecules using bonds between pairs of components, which is denoted using the ! symbol followed by 
a bond index. Shown below are three species of increasing size:

Rec(alpha,beta~0,gamma~0)
Rec(alpha,beta~0!1,gamma~0).Lyn(U!1,SH2)
Rec(alpha,beta~0!1,gamma~P!2).Lyn(U!1,SH2).Syk(tSH2!2,aloop~0,linker~0)

The first species contains a single Rec molecule with nothing bound and all sites unphosphorylated (i.e., 
with states ~0). The second species has two molecules Lyn and unphosphorylated Rec, and these are bound 
via their respective U and beta components. The bond label !1 is placed adjacent to beta and U components 
to show that there is a binding interaction between them. The third species has three molecules, Lyn, Syk, 
and Rec, that are bound together by a bond !1 between U and beta components and a bond !2 between 
gamma and tSH2 components, with gamma phosphorylated as indicated by the state ~P. Arbitrarily large 
complexes can be constructed in this manner and the process can be automated as discussed below.

5.4 � PATTERNS SELECT SPECIES WITH SHARED FEATURES

The advantage of using a structured graph specification for chemical species such as molecules and complexes 
is that it is possible to refer to multiple species by specifying a shared subgraph. Such a subgraph is called a 
pattern in BioNetGen and serves as a tool to partition the state space into matching versus non-matching 
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chemical species without having to enumerate the full state space of species. Because both patterns and chem-
ical species are graphs constructed from the same fundamental elements, one can define patterns to match 
any set of structural features in any arrangement of molecules within a complex, and the specified pattern 
may be matched by any number of molecules and complexes.

Shown below is a pattern that selects free ligand, i.e., ligand with both sites unbound.

Lig(fc,fc)

This pattern matches exactly one chemical species in the model: the free ligand molecule (Figure 5.3a).

Lig(fc,fc)

Next, we show a pattern that selects receptors with an unbound alpha domain.

Rec(alpha)

Note that we have omitted the other receptor components beta and gamma, which means that their 
binding and modification states will not affect selection of matching species. This pattern matches 24 species 
in the model (unligated monomeric receptor complexes in Figure 5.2), three of which are shown below and 
also visualized in Figure 5.3b.

Rec(alpha,beta~0,gamma~0)
Rec(alpha,beta~0!1,gamma~0).Lyn(U!1,SH2)
Rec(alpha,beta~0!1,gamma~P!2).Lyn(U!1,SH2).Syk(tSH2!2,aloop~0,linker~0)

Next, we show a pattern that selects ligand-containing complexes in which one site on the ligand is free, 
but the other is bound to a receptor:

Lig(fc,fc!0).Rec(alpha!0)

This pattern matches 24 species in the model (ligand-bound monomeric receptor complexes in Figure 5.2), 
three of which are shown below and also visualized in Figure 5.3c.

Lig(fc,fc!0).Rec(alpha!0,beta~0,gamma~0)
Lig(fc,fc!0).Rec(alpha!0,beta~0!1,gamma~0).Lyn(U!1,SH2)
Lig(fc,fc!0).Rec(alpha!0,beta~0!1,gamma~P!2).Lyn(U!1,SH2). 
						      Syk(tSH2!2,aloop~0,linker~0)

In the full model, the patterns Rec(alpha) and Lig(fc,fc!0).Rec(alpha!0) will match all 24 mono-
meric receptor complexes and 24 ligand-bound monomers respectively, whose accounting was performed in 
Figure 5.2.

The BioNetGen pattern syntax enables flexible selection of different chemical species based on which 
structural features are specified. As discussed previously, omitting a component implies that neither its bind-
ing nor internal states will be used as match criteria. It is also possible to specify the binding state but not 
the internal state, e.g., Rec(beta) will match complexes with an unbound beta domain, both beta~0 
and beta~P. Similarly, it is also possible to specify the internal state if present, but leave the binding state 
unspecified (!?) or partially specified (!+). Here, !? matches both bound and unbound states of components, 
and !? matches all bonds with that component type irrespective of binding partner.

5.5 � REACTION RULES DEFINE INTERACTIONS BETWEEN 
MOLECULES AND CAN GENERATE REACTIONS

Reaction mechanisms specified in the BioNetGen language are called reaction rules. A reaction rule has five 
parts: (1) an optional label, (2) patterns specifying the properties reactants must possess to be selected by the 



5.5  Reaction rules define interactions between molecules and can generate reactions  77

Ly
n SH

2
URe

c

al
ph

a
be

ta 0

ga
m

m
a

0

Ly
n SH

2
URe

c

al
ph

a
be

ta 0

ga
m

m
a

0

Pa
tt

er
n Re

c

al
ph

a

Li
g

fc
fc

Re
c

ga
m

m
a

P

be
ta 0

al
ph

a

Sy
k

al
oo

p

0

lin
ke

r

0

tS
H

2

Li
g

fc
fc

Li
g

fc
fc

Li
g

fc
fc

Ly
n SH

2
URe

c

al
ph

a
be

ta 0

ga
m

m
a

0

Ly
n SH

2
URe

c

al
ph

a
be

ta 0

ga
m

m
a

0

Pa
tt

er
n

Re
c

al
ph

a

Re
c

ga
m

m
a

P

be
ta 0

al
ph

a

Sy
k

al
oo

p

0

lin
ke

r

0

tS
H

2

Pa
tt

er
n

Li
g

fc
fc

Li
g

fc
fc

(c
)

(b
)

(a
)

Fi
g

u
re

 5
.3

 S
ho

w
n 

ar
e 

th
re

e 
p

at
te

rn
s 

an
d

 h
o

w
 t

he
y 

m
at

ch
 v

ar
io

us
 c

he
m

ic
al

 s
p

ec
ie

s 
(m

o
le

cu
le

s 
an

d
 c

o
m

p
le

xe
s)

. (
a)

 P
at

te
rn

 L
i
g(
fc
,f
c)

 s
p

ec
ifi

es
 t

ha
t 

b
o

th
 f

c 
si

te
s 

ar
e 

un
b

o
un

d
. 

It
 m

at
ch

es
 o

ne
 s

p
ec

ie
s:

 f
re

e 
lig

an
d

. 
(b

) 
Pa

tt
er

n 
R
e
c(
a
l
p
h
a)

 s
p

ec
ifi

es
 t

ha
t 

al
p

ha
 s

it
e 

o
n 

re
ce

p
to

r 
is

 u
nb

o
un

d
. 

In
 t

he
 F

ce
R

I 
m

o
d

el
, 

it
 m

at
ch

es
 2

4 
un

lig
at

ed
 

m
o

no
m

er
ic

 re
ce

p
to

r c
o

m
p

le
xe

s,
 t

hr
ee

 o
f w

hi
ch

 a
re

 s
ho

w
n 

he
re

. (
c)

 P
at

te
rn

 L
i
g(
fc
,f
c!
0)
.R
e
c(
a
l
p
h
a!
0)

 s
p

ec
ifi

es
 t

ha
t o

f t
w

o
 fc

 s
it

es
 o

n 
th

e 
lig

an
d

; o
ne

 is
 u

nb
o

un
d

 a
nd

 
th

e 
o

th
er

 is
 b

o
un

d
 t

o
 a

 r
ec

ep
to

r 
al

p
ha

 s
it

e.
 It

 m
at

ch
es

 2
4 

lig
an

d
-b

o
un

d
 m

o
no

m
er

ic
 r

ec
ep

to
r 

co
m

p
le

xe
s 

in
 t

he
 F

ce
R

I m
o

d
el

, t
hr

ee
 o

f w
hi

ch
 a

re
 s

ho
w

n 
he

re
.



78  An introduction to rule-based modeling of immune receptor signaling

rule, (3) an arrow indicating whether or not the rule is reversible, (4) patterns specifying the products to 
indicate how reactants are transformed by the rule, and (5) a set of rate laws that govern the kinetics of 
each reaction generated by the rule. Shown below is a reaction rule involving the three patterns specified 
above:

R1:	 Lig(fc,fc) + Rec(alpha) <-> Lig(fc,fc!0).Rec(alpha!0)     kp1,km1

The rule is visualized in Figure 5.4a. Here, R1 is the name of the rule. The rule is bidirectional because of 
the use of the reversible arrow (<->). Lig(fc,fc) and Rec(alpha) are the reactant patterns. Lig(fc,fc) 
specifies that both sites on ligand are unbound, so it will match the free ligand species. Rec(alpha) matches 
receptors with an unbound alpha domain, so it will match all 24 monomeric receptor complexes that do not 
have a bound ligand. The pattern Lig(fc,fc!0).Rec(alpha!0) is the product of the rule. By examining 
it relative to the reactants, BioNetGen infers that the action of the rule is to add a bond between an available 
fc site and alpha subunit and can apply the rule to all combinations of matched reactant species. Since 
Lig(fc,fc) and Rec(alpha) match 1 and 24 species respectively, the reaction rule generates 1×24 ligand-
binding reactions. Application of the rule in reverse also generates all corresponding ligand dissociation 
reactions, i.e., the 24 reactions that result in free ligand and a monomeric receptor complex. kp1 and km1 
are the rate constants applicable to reactions generated from the forward and reverse directions of the rule 
respectively.

Unidirectional rules can be specified by using the forward arrow (->) and specifying only one rate con-
stant. An example of a unidirectional rule is shown below, modeling transphosphorylation of receptor by 
recruited Lyn:

R4:	 Lyn(U!1).Rec(beta!1,alpha!2).Lig(fc!2,fc!3).Rec(alpha!3,beta~0)->	 \
	 Lyn(U!1).Rec(beta!1,alpha!2).Lig(fc!2,fc!3).Rec(alpha!3,beta~P)	 pLb

The rule named R4 is visualized in Figure 5.4b. Here, the reactant pattern shows four molecules con-
nected by three bonds: a ligand bound to two receptors and Lyn bound to one of the receptors. The other 
receptor is phosphorylated on the free beta component, i.e., transformed from ~0 on the reactant side to 
~P on the product side (shown in red). The gamma components on the receptors are omitted since they 
do not explicitly affect this process. pLb is a parameter that specifies the first order phosphorylation rate 
constant.

Because patterns used in rules can get large, it helps to sort the specified structures into reaction center 
and reaction context to aid their comprehension and discussion. The reaction center is the set of structures 
that are modified by the rule and thereby defines the action of the rule. The reaction center of rule R1 specified 
above is the set of binding sites fc and alpha on the reactant side, and the fc-alpha bond on the product 
side. The reaction center of rule R4 is the internal state of the beta component that was modified from ~0 to 
~P. The reaction context includes the remaining structures that are specified in the rule but are not modified 
by the rule. This establishes the set of local conditions under which the action of the rule is allowed to happen. 
For rule R1, the reaction context is the presence of a second unbound fc site. For rule R4, the reaction context 
is the unbound status of the beta site that was phosphorylated and the set of three bonds that constitute the 
Lyn-recruited-to-dimer configuration. Given a rule, the reaction center is identified by the differences between 
the reactants and products of the rule and the reaction context is identified by structures preserved on both 
reactants and products.

Rules interact with each other when the reaction center of one rule overlaps with the reaction context of 
another. For example, the fc-alpha bond that is formed in rule R1 is necessary for the Lyn-recruited-to-
dimer configuration that is context for rule R4, implying that R1 enables R4. These interactions constitute 
the flow of signal through the system and reaction rules enable reconstituting a signaling pathway from the 
fundamental kinetic processes. The FceRI model used in this chapter has 19 reaction rules: 1 for ligand-
binding, 1 for receptor crosslinking by ligand, 2 for Lyn binding to receptor, 2 for Syk binding to receptor, 
6 for transphosphorylation by Lyn on receptor and Syk sites, 2 for transphosphorylation by Syk on Syk, and 
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6 for background dephosphorylation processes, respectively. In the BioNetGen model file, rules are listed in 
the reaction rules block:

begin reaction rules
# Ligand-receptor binding
R1: Rec(alpha) + Lig(fc,fc) <-> Rec(alpha!1).Lig(fc!1,fc)  kp1, km1
# Receptor-aggregation
R2: Rec(alpha) + Lig(fc,fc!0).Rec(alpha!0) <-> \
Rec(alpha!1).Lig(fc!1,fc!0).Rec(alpha!0)  kp2, km2
# Constitutive Lyn-receptor binding
R3: Rec(beta~0) + Lyn(U,SH2) <-> Rec(beta~0!1).Lyn(U!1,SH2)  kpL, kmL
# Transphosphorylation of beta by constitutive Lyn
R4: Lyn(U!1).Rec(beta!1,alpha!2).Lig(fc!2,fc!3).Rec(alpha!3,beta~0)->\ 
Lyn(U!1).Rec(beta!1,alpha!2).Lig(fc!2,fc!3).Rec(alpha!3,beta~P) pLb
...
...
end reaction rules

Text beginning with # and ending on a line break can be used to provide useful comments and annota-
tions anywhere in the model, and they are ignored by the BioNetGen processor. The character \ can be used 
to split rules across lines when the rules get really large. Within patterns, the order of components between 
brackets does not matter. Similarly, the specific bond index used for bonds does not matter, as long as the 
intended pair of components has the same unique bond index. BioNetGen also allows more complex specifi-
cations for the rate law that are out of the scope of this chapter (Chylek et al., 2015).

5.6 � OBSERVABLES AND FUNCTIONS DEFINE THE OUTPUTS 
OF THE MODEL

There are two types of outputs in the BioNetGen model: measurements of species concentrations called 
observables and functions of those observables. In a rule-based model, pattern matching can be exploited 
to generate sums of species automatically. Observables are of two types: counting unique complexes only, 
or counting individual matches of patterns within complexes. These are specified using the Species and 
Molecule keywords respectively within the observables block. For the FcεRI model, we are interested in 
the partitioning of individual receptor and Syk molecules into various configurations, so we will only use 
Molecule observables. The observables block used for this model is:

begin observables
	 Molecules		 Dimer		  Rec(alpha!1).Lig(fc!1,fc!2).Rec(alpha!2)
	 Molecules		 TotalRec	 Rec() 
	 Molecules		 ActiveSyk	 Syk(aloop~P)
	 Molecules		 TotalSyk	 Syk()
	 Molecules		 BetaP		  Rec(beta~P!?)
	 Molecules		 GammaP		  Rec(gamma~P!?)
end observables

Here, the pattern Rec(alpha!1).Lig(fc!1,fc!2).Rec(alpha!2) counts all ligand-crosslinked 
dimer species, of which there are 300 types in the model. Since it is a Molecule observable and the pat-
tern will match twice into each dimer, each dimer will be counted twice and the resultant sum will be the 
total number of receptors in dimers. The pattern Syk(aloop~P) counts number of Syk molecules with 
phosphorylated activation loop, and the patterns Rec(beta~P!?) and Rec(gamma~P!?) count receptor 
molecules that are respectively phosphorylated on beta and gamma. Here !? was used to ensure that the 
observable counted both unbound and bound forms of beta and gamma components. This was not neces-
sary for aloop since there are no binding rules specified for aloop. Also, the two observables for β and γ 
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phosphorylation will have some species that are counted for both observables since receptors can be phos-
phorylated on both beta and gamma sites. Finally, observables Rec() and Syk() simply count all receptor 
molecules and Syk molecules in the system respectively, as no component-matching terms are specified.

Functions of observables can be defined in the functions block. For the FcεRI model, we will consider 
three outputs: fraction of receptor in dimers, fraction of Syk that is active (i.e., phosphorylated on the activa-
tion loop), and ratio of phosphorylated gamma and beta sites on receptors.

begin functions
	 DimerFraction				    Dimer/TotalRec
	 AutoPhosphorylatedSykFraction		 ActiveSyk/TotalSyk
	 GammaBetaPhosphorylationRatio		 GammaP/BetaP
end functions

5.7 � PARAMETERIZING A MODEL REQUIRES GEOMETRIC TERMS, 
RATE CONSTANTS, AND SPECIES CONCENTRATIONS

Parameterizing a BioNetGen model requires a self-consistent set of units for concentrations and rate con-
stants. For this particular model, we have only used unimolecular and bimolecular reactions and we would 
like to measure protein fluxes in molecules per second. We will limit ourselves to considering a single cell 
surrounded by a milieu of freely diffusing ligand. We will also specify units as comments using # symbol in 
order to be clear to the modeler. These comments will be ignored by BioNetGen.

First, we will need to specify fundamental constants such as π and Avogadro’s number NA to be used in 
our calculations.

NA		  6.023e23	 # units: molecules/mol
pi		  3.14159		 # no unit

Next, we will need to specify concentrations of proteins and ligands that reflect the experimental setup. 
Ligand concentration for this system is typically provided in nanomolar values and has to be converted to 
molecule numbers. One molar concentration is one mol/liter, so the conversion is achieved by multiply-
ing molar concentration with the Avogadro constant and volume of the external milieu, which in turn is 
estimated from a cell density of million cells per milliliter. A conversion factor of 1e3 is required to convert 
milliliter volumes to liters.

celldensity	 1e6*1e3			  # units: cells/L
vol_ext		 1/celldensity		  # units: L/cell*(1 cell) = L
Lig_conc	 1e-9			   # units: molar
Lig_tot		 Lig_conc*vol_ext*NA	 # units: molecules

Receptor numbers are usually provided as molecule numbers per cell, so they are used directly. Lyn and 
Syk numbers are estimated relative to receptor numbers, so they are specified using proportional factors.

Rec_tot		 4e5			   # units: molecules
fLyn		  0.07
fSyk		  1
Lyn_tot		 fLyn*Rec_tot
Syk_tot		 fSyk*Rec_tot

Unimolecular rate constants such as those for phosphorylation, dephosphorylation, and bond dissocia-
tion are usually known or estimated in per second units, so they can be used directly. Here, we show one 
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example of each: ligand dissociation constant (km1), rate of β -phosphorylation by Lyn (pLb), and rate of 
background dephosphorylation at the membrane (dm).

km1		  0.01	 # units: /s
pLb		  30	 # units: /s
dm		  20	 # units: /s

Bimolecular association rate constants are usually provided in units of “per molar per second”. 
Converting to per molecule per second requires dividing by Avogadro constant and the respective volume 
in which the bimolecular association occurs. We show three examples below: association rate constant for 
free ligand that needs to be scaled by external volume (kp1), association rate constant for ligand crosslinking 
that occurs in the membrane (kp2), and association rate constant for Lyn binding to unphosphorylated β 
site that occurs in the cytoplasm (kpL). For a simple BioNetGen model, scaling of association rate constants 
can be performed manually, but for more complicated systems it is recommended to use the compartmental 
extension to the BioNetGen framework (Harris et al., 2009a) where such scaling is performed automatically.

kp1	 1e7/(NA*vol_ext)	 # units: /molecule/s
kp2	 1e6/(NA*vol_mem)	 # units: /molecule/s
kpL	 4.2e7/(NA*vol_cell)	 # units: /molecule/s

External volume was calculated previously from cell density. Volume of the membrane is specified by 
multiplying surface area of the cell with an effective width of 10 nanometers (Harris et al., 2009a). Volume 
and surface area of the cell are both estimated by assuming a spherical cell with 7 micron radius. Cubic meter 
volume is converted to liter units by multiplying by 1e3.

rad_cell	 7e-6				    # units: meter
vol_cell	 1e3*(4/3)*pi*rad_cell^3	 # units: L
surf_area	 4*pi*rad_cell^2		  # units: squared meter
eff_width	 10e-9				    # units: meter
vol_mem		 1e3*surf_area*eff_width	 # units: L

Here, the association constant for membrane reactions (kp2) was specified as a three-dimensional asso-
ciation rate constant (units: per molar per second, i.e., per “mol per liter” per second), which necessitates a 
conversion of the two-dimensional surface area of the membrane to a three-dimensional volume using an 
effective width term. An alternate parameterization would be to use a two-dimensional association rate con-
stant (units: per “mol per squared meter” per second), in which case it is sufficient to multiply by surface area 
only and not the effective width.

The parameters and parameter expressions are specified in the parameters block in the model file.

begin parameters
	 NA			  6.023e23			   # units: molecules/mol
	 pi			  3.14159
	 rad_cell		  7e-6				    # units: meter
	 vol_cell		  1e3*(4/3)*pi*rad_cell^3	 # units: L
	 celldensity	 1e6*1e3				   # units: cells/L
	 vol_ext		  1/celldensity			   # units: L/cell*(1 cell)= L
	 Lig_conc		  1e-9				    # units: molar
	 Lig_tot		  Lig_conc*vol_ext*NA		  # units: molecules
	 ...
	 ...
end parameters

Initial concentrations for chemical species are specified in the seed species block. The concentrations 
can be specified in terms of parameter expressions defined in the parameters block.
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begin seed species
	 Lig(fc,fc)			   Lig_tot
	 Lyn(U,SH2)			   Lyn_tot
	 Syk(tSH2,linker~0,aloop~0)	 Syk_tot
	 Rec(alpha,beta~0,gamma~0)	 Rec_tot
end seed species

In the seed species block, only fully defined molecules and complexes must be specified. In other 
words, every molecule should have every component present, and every component should have internal and 
binding states clearly specified. For this model, the unbound and unphosphorylated forms of all molecules 
are considered to be the seed species. Depending on how the system is simulated the remaining species that 
can occur in the system will either be generated by iterative application of the rules to the seed species by a 
process called network generation, or they will be discovered “on-the-fly” as the system is simulated and rules 
modify the state of the initial species (Faeder et al., 2009).

5.8 � MODEL ACTIONS ARE USED TO SIMULATE AND ANALYZE 
A MODEL

The complete model specification has blocks for parameters, molecule types, reaction rules, observables, and 
seed species, and is stored in a text file with the extension “.bngl”. Model actions are appended to the end of 
the model file in order to call tools that use the model specification. This enables the specified model to be con-
verted into a reaction network, simulated using multiple available methods, exported to other frameworks, 
visualized at different resolutions, and also scanned over parameter ranges to reveal parameter sensitivity 
and bifurcation properties. A comprehensive actions and arguments guide is available at http://bionetgen​
.org. Here, we will discuss the use of three model actions: generate _ network(), simulate(), and 
parameter _ scan().

5.8.1 �R eaction network can be generated 
from a rule-based model

The following action is used to generate a reaction network whose kinetics are equivalent to the specified 
rule-based model:

generate_network({overwrite=>1})

This command iteratively applies the reaction rules to the seed species in order to generate new configura-
tions of molecules and complexes and new reactions (Faeder et al., 2009). The full state space of molecules, 
complexes, and reactions is written to a file with the extension “.net”. The overwrite command is to ensure 
that when network generation is performed a second time, any past generated networks of the same model 
are overwritten. For the full model with four seed species and 19 rules, the generate _ network() action 
results in 354 total number of species and 3680 reactions (Faeder et al., 2003).

One of the features of network generation is that the calculation of statistical factors for reactions is han-
dled automatically. For this reason, it is advantageous to build rule-based models even for small reaction 
networks. We will show using simple examples how BioNetGen handles symmetry and multiplicity.

Multiplicity factors are needed when the same rule can be applied to multiple identical parts of the same 
reactant species, which increases the effective rate by a factor. For example, consider the molecule types A(b) 
and B(a,a) and the reaction rule:

R_AB:	 A(b) + B(a) <-> A(b!1).B(a!1)	kf,kr

http://bionetgen.org
http://bionetgen.org
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Now consider how to parameterize two pairs of reversible binding reactions generated from the rule: 
binding in which both sites on B are free, and binding in which one of the sites is already occupied.

A(b) + B(a,a)		  <->	 A(b!1).B(a!1,a)			 
A(b) + B(a,a!1).A(a!1)	<->	 A(b!2).B(a!2,a!1).A(b!1)	

The pattern B(a) matches to species B(a,a) in two different ways, i.e., using one or the other free bind-
ing site. This means that the effective rate of the reaction is double what one would expect if there was only 
one free site on B. BioNetGen would detect this and calculate a multiplicity factor of 2 for the forward reac-
tion, i.e.:

A(b) + B(a,a)		  <->	 A(b!1).B(a!1,a)			   2*kf,kr

For the second pair of reactions, the product pattern A(b!1).B(a!1) would match twice into the species 
A(b!2).B(a!2,a!1).A(b!1)since there are two identical bonds that could be matched. In this case, it is the 
reverse reaction that needs to be multiplied by two, since the presence of two identical bonds would double 
the effective rate of bond breaking, i.e.:

A(b) + B(a,a!1).A(a!1) <-> A(b!2).B(a!2,a!1).A(b!1)	 kf,2*kr

Symmetry factors are needed when the action of a rule modifies at least two instances of a species simulta-
neously and identically. For example, consider the molecule type A(b~0~1) and the reaction rule:

R_AA:	 A(b) + A(b) -> A(b!1).A(b!1)	 kf

The reaction rule would generate three reactions:

A(b~0) + A(b~1) -> A(b~0!1).A(b~1!1)	
A(b~0) + A(b~0) -> A(b~0!1).A(b~0!1)	
A(b~1) + A(b~1) -> A(b~1!1).A(b~1!1)	

The first reaction involves two different reactant species: A(b~0) and A(b~1). If N0 and N1 are the concen-
trations of A(b~0) and A(b~1) respectively, then the first reaction would have a rate of kfN0N1.

The second reaction operates on two instances of the same species A(b~0), and the rate is determined 

to be kf N N0 0 1
2

( )− , where N N0 0 1
2

( )−  is the number of ways to select two molecules out of N0 molecules. 

For high N0, k
N N k N

f
0 0 0

21
2 2

( )−
≈ , but a rate calculation similar to the first reaction would only yield k Nf 0

2. 

Therefore, a factor of ½ needs to be applied for the second reaction and not the first. Similarly, the third reac-

tion would also have an effective rate of k N
f

1
2

2
 since it operates on two instances of the same species A(b~1). 

Using graph isomorphism calculations (Hogg et al., 2014), BioNetGen estimates the correct symmetric factor 
adjustment for the rate constants of all generated reactions, i.e.:

A(b~0) + A(b~1) -> A(b~0!1).A(b~1!1)	 kf	
A(b~0) + A(b~0) -> A(b~0!1).A(b~0!1)	 0.5*kf
A(b~1) + A(b~1) -> A(b~1!1).A(b~1!1)	 0.5*kf

5.8.2 �M odel simulation and parameter scans reveal insight 
about model behavior

The specified model is simulated using the simulate() action.

simulate({method=>“ode”,t_end=>600,n_steps=>10,print_functions=>1})
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There are three simulation methods that can be used: ODE integration (method=>“ode”), Gillespie’s 
stochastic simulation algorithm (method=>“ssa”) (Gillespie, 1977) and network-free stochastic simula-
tion (method=>“nf”). The ODE and SSA methods require the reaction network to be generated prior to 
simulation. Network-free simulation uses the NFsim algorithm (Sneddon et al., 2011), which was designed 
to exactly simulate kinetics without having to generate the full reaction network in advance of the simu-
lation. It generates results indistinguishable from SSA and is useful for models that generate dispropor-
tionately large or infinite reaction networks, e.g., models with oligomerization rules. In these networks, 
the number of unique species may be much larger than the actual number of molecules and complexes 
present during simulation and only a fraction of the state space may be populated at any given time. In 
practical terms, the network-free simulation method typically leads to faster simulations than the corre-
sponding SSA when the number of possible species is more than several hundred to a thousand (Sneddon 
et al., 2011).

The outputs of the simulate() action are trajectory files with extensions “.cdat” and “.gdat”. The “.cdat” 
file is generated by ODE and SSA methods and contains concentrations of all molecules and complexes over 
time. The “.gdat” file is generated by all three methods and contains the measured values over time for the 
observables defined in the observables block. If the print _ functions=>1 flag is used, then the 
“.gdat” files include columns for each of the specified functions in the functions block also. The trajectory 
files can be imported into any data-processing software such as Microsoft Excel, OpenOffice Calc, or MatLab.

BioNetGen provides additional actions in order to run multiple simulations of the same model at different 
parameter settings, such as setParameter(), setConcentrations(), resetConcentrations(), 
etc. It also provides a command to run batch simulations called parameter _ scan(), which enables 
scanning over a particular parameter given a range of values while keeping other parameters constant. 
parameter _ scan() takes the same arguments as simulate() shown above, and additionally takes 
arguments that specify the range of values to be scanned over and the reset behavior between simulations. 
The results of parameter _ scan() are stored in a similar form to “.gdat” and “.cdat” files, but with the 
extension “.scan”. Here, we show how parameter scans can be used to elucidate aspects of model behavior.

Shown in Figure 5.5 are results from three parameter scans for each of the three outputs defined in the 
functions block, i.e., receptor fraction in dimers, ratio of γ / β phosphorylation, and active Syk fraction. 
The parameter scan over ligand concentration was performed using the command:

parameter_scan({method=>”ode”,parameter=>”Lig_conc”,par_min=>1e-12, \ 
par_max=>1e-,n_scan_pts=>50, log_scale=>1,reset_conc=>1, \ 
print_functions=>1,t_end=>600,n_steps=>5})

Note that method, print _ functions, t _ end and n _ steps arguments are used the same as 
in the simulate() command. Additionally, parameter specifies the parameter to scan over, par _ min 
and par _ max establish the minimum and maximum of the range of values to be used, n _ scan _ pts 
determines how many points to sample within the range. log _ scale=>1 sets the spacing between points 
to be logarithmic, which enables scanning over many orders of magnitude. For smaller ranges, the default 
setting of log _ scale=>0 is used, which ensures that the sampled points are spaced equally. reset _
conc=>1 ensures that when a new simulation is run, all parameter values and species concentrations are 
reset instead of being carried over from the previous simulation. In the parameter _ scan() com-
mand shown above, we enable scanning over ligand concentration from 1e-12 M to 1e-3 M. The other two 
parameter _ scan() methods shown below scan over Lyn/receptor ratio and Syk/receptor ratio between 
the range of 0.01 to 10 and use the same remaining arguments as the first one. Action statements can also be 
split across multiple lines using the \ character.

parameter_scan({parameter=>”fLyn”,par_min=>0.01,par_max=>10,\
n_scan_pts=>50,log_scale=>1,...})
parameter_scan({parameter=>”fSyk”,par_min=>0.01,par_max=>10,\
n_scan_pts=>50,log_scale=>1,...})
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In systems such as the FcεRI model where crosslinking by a ligand or scaffold is necessary for signaling, 
one can observe a phenomenon called high dose inhibition. As seen in Figure 5.5, at high concentrations of 
ligand, the fraction of receptors in dimers actually decreases to negligible values, and there is a correspond-
ing decrease in the active Syk fraction. This phenomenon occurs because binding of free ligand competes 
with the crosslinking mechanism for free monomeric receptors, and free ligand binding dominates at high 
ligand concentrations, leading to decreased crosslinking and fewer dimers (Nag et al., 2010). Another mecha-
nistic insight that can be derived for this system is the modulation of γ / β phosphorylation by Lyn and Syk 
numbers. In the model, β sites are phosphorylated by Lyn, as well as protected by Lyn-binding. On the other 
hand, γ sites are phosphorylated by Lyn, but protected by Syk-binding. As Lyn numbers increase, the ratio of 
γ / β phosphorylation decreases, since more β sites are being protected by Lyn-binding (Faeder et al., 2003). 
Similarly, as Syk numbers increase, the ratio of γ / β phosphorylation increases, since more γ sites are being 
protected by Syk-binding (Faeder et al., 2003).

5.9 � ADVANCED METHODS

In the previous section, we covered elementary actions that can be applied to BioNetGen models, such as net-
work generation and simulation by ODE, SSA (Gillespie, 1977), or NFsim (Sneddon et al., 2011). In addition 
to the basic specification demonstrated in this chapter, extensions to the BioNetGen language include speci-
fication of compartments and transport rules (Harris et al., 2009a), use of observables and local functions 
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Figure 5.5  Simulation Results. Simulated dose-response curves from three different parameter scans (rows) of 
the model. For each scan, the outputs measured were fraction of receptors in dimers, ratio of phosphorylation 
between γ and β sites, and fraction of Syk that is active (columns). Varying ligand concentration showed that 
dimerization and Syk activation are inhibited at high ligand doses. Varying Lyn/receptor ratio showed that high 
concentrations of Lyn protect β sites from dephosphorylation. Varying Syk/receptor ratio showed that high 
concentrations of Syk protect γ sites from dephosphorylation.
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in rate laws (Sneddon et al., 2011), and preservation of detailed balance (Hogg, 2013). In addition to these, a 
number of improvements to simulation algorithms have been developed that are centered on the BioNetGen 
specification. For models where network-free simulation can occupy too much memory due to large numbers 
of certain molecules and complexes, a hybrid approach between network-based and network-free methods 
can be used (Hogg et al., 2014). The efficiency of each SSA simulation can be improved by enabling tau-leaping 
procedures (Harris et al., 2009b), and the sampling of rare stochastic events can be improved by weighted 
ensemble simulation (Donovan et al., 2013). A comprehensive BioNetGen actions and arguments guide is 
available at http://bionetgen.org.

A number of external software have interfaces to BioNetGen or utilize BioNetGen as a back end. These 
include modeling environments that facilitate model construction using programmatic, tabular, or graphical 
interfaces, such as VCell (Moraru et al., 2008), pySB (Lopez et al., 2013), rxncon (Tiger et al., 2012), and 
BioUML (Kolpakov et al., 2006). Parameter sensitivity analysis and fitting to experimental data can be per-
formed for BioNetGen models using the ptempest toolbox for MatLab (Hogg, 2013) and the BioNetFit software 
(Thomas et al., 2015). Recently, we have developed advanced visualization tools for showcasing individual 
rules and interactions between rules (Sekar et al., 2017), ported BioNetGen model specification for the MCell 
simulator that explicitly simulates spatial diffusion and reactions (Stefan et al., 2014), and enabled conversion 
of reaction networks to rule-based specifications (Tapia and Faeder, 2013). Kappa (http://kappalanguage​.org/) 
and Simmune (http://simmune.org) are other rule-based modeling frameworks with similar rule-based 
specifications to BioNetGen, and they have their own constellations of related tools and software. A common 
interchange format SBML-Multi is being developed to enable models to be translated and analyzed across rule-
based frameworks (http://sbml.org).

5.10 � RESOURCES

The BioNetWiki (http://bionetgen.org) is the main resource for all BioNetGen related tools. On the Downloads 
page, links are provided for the standalone BioNetGen distribution as well as the distribution bundled with 
RuleBender, a graphical user interface. Currently, precompiled packages are distributed for Windows, OSX, and 
Linux platforms. On the Tutorials page, one can find models that have been presented or published as parts of tuto-
rials, including the model used in this chapter. For a comprehensive reference of BioNetGen syntax and usage, see 
Faeder, Blinov, and Hlavacek (2009). An updated online version is maintained on the wiki, with additional docu-
mentation on model visualization, bifurcation analysis, tau leaping, SBML import, and other advanced tools. 
Also on the wiki is a comprehensive reference for model actions and arguments used in BioNetGen. Sekar and 
Faeder (2012) provide a more detailed tutorial on BioNetGen that includes compartmental specification and the 
reconstruction of a large signaling pathway. Chylek et al. (2013) provide a current review of rule-based methods 
and Chylek et al. (2015) give examples that illustrate a number of advanced modeling features. The formalisms 
used in BioNetGen are explained in Blinov et al. (2006) and Hogg et al. (2014). For more detailed examples of rule-
based models of immunoreceptor signaling, see the libraries of rules for FcεRI (Chylek et al., 2014b) and the large 
scale model of T cell receptor signaling (Chylek et al., 2014a), as well as Chapter 13 in this volume.
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6

Boolean models in immunology

REINHARD LAUBENBACHER AND ELENA DIMITROVA

6.1 � INTRODUCTION

The use of mathematical models in immunology goes back to the 1970s, mostly focused on capturing the 
dynamics of different cell populations in a host, generally with the aid of ordinary differential equations 
(see, e.g., [1]). Since then, modeling has become an important technology in this field. Systems of ordinary 
differential equations still represent a key modeling framework, but they have been joined by models of other 
types, in particular Boolean models and their generalizations as well as agent-based models. Modeling with 
differential equations as well as agent-based modeling is discussed elsewhere in this volume. In this chapter, 
we focus on the use of Boolean models and their generalizations in immunology.

The immune system has emerged as a tremendously complex “complex system” that is still very poorly 
understood. It has been recognized early on that mathematical models of various kinds are indispensable for 
a quantitative understanding of the myriad interconnected dynamic processes comprising the immune sys-
tem. Broadly speaking, the majority of published models can be divided into two types. One type focuses on 
intracellular molecular networks involved in gene regulation, signaling, and other molecular processes. The 
other type focuses on systemic aspects of immune system dynamics, primarily capturing cell populations.

The choice of mathematical modeling framework, as always, depends primarily on the kind of problem 
to be solved and the types of data and information that is available for the task. Boolean network models are 
best suited to capture the regulatory logic that connects different molecular species or different cell popula-
tions. Such models consist of a collection of nodes, representing, e.g., genes or cell types. Each node can take 
on a finite number of different states, such as “high/low,” “active/inactive,” or “low/normal/high.” Classical 
Boolean network models allow two possible states per node, but the framework can accommodate any finite 
number of states. Different types of directed arrows between these nodes represent relationships through 
which one node can influence the state of another node, e.g., activation or inhibition. The result is a graphical 
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representation of a network, which can be viewed as a type of wiring diagram commonly used in the immu-
nology literature. Furthermore, each node is equipped with a logical rule that integrates the different causal 
relationships and serves as a mechanism to drive the temporal evolution of the network in discrete time. That 
is, if node A is in state a at time t, A(t) = a, it is regulated by nodes B and C, and its logical rule is denoted by f, 
then the state of A at time t + 1 can be described by the functional relationship

	
A t f B t C t a( ) ( ), ( ), .+ = ( )1

Iterating this process, we obtain the temporal evolution of node A. We illustrate this framework with a 
simple abstract example for an entire network.

Let A, B, C, D represent four transcription factors, each of which can be either expressed (1) or not expressed 
(0). We presuppose the following regulatory relationships between these: A upregulates B, B and C synergisti-
cally downregulate D, that is, both B and C need to be present to exert this action, B inhibits expression of C, 
C activates A, and A inhibits C (see Figure 6.1 for a wiring diagram of this network).

The logical rules for the four nodes are as follows

	

A t C t
B t A t
C t A t

( ) ( ),
( ) ( ),
( ) ( )

+ =
+ =
+ =  

1
1
1 NOT ORR NOT

AND

B t
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Table 6.1 shows the transition table for node A. These rules can be interpreted via the following “transition 
tables.” The table for node A is given in Figure 6.1, and is similar to that for node B. Table 6.2 describes the 
rules for node C, with node D regulated as in Table 6.3.

B

A

C

D

2

2

2
2

Figure 6.1  Wiring diagram for example network. The diagram was built using the software tool PlantSimLab 
(plantsimlab.org). The numeral 2 above the node names indicates that the node takes on two possible values.

Table 6.1  Transition table for node A

A(t) C(t) A(t + 1)

0 0 0

0 1 1

1 0 1

1 1 1

Note:	 If A is not expressed at time t, and C is expressed, then it will upregulate 
expression of A at time t + 1. On the other hand, if A is expressed already, 
then, in the framework of binary states, C does not have any effect on A. That 
is, each row of the table can be interpreted as a biological statement about 
regulation of A by C, and the four rows cover all possible combinations of the 
states of A and C at time t.



6.1  Introduction  93

We can now successively apply all these rules and generate the global dynamics of the network. This can be 
done by drawing another graph that has all possible network states as nodes, in this case all binary 4-tuples, 
representing all possible combinations of states of A-D. In this case, there will be 24 = 16 such states. An arrow 
from state x to state y indicates that the system transitions from x to y when the transition rules are applied to 
each of the four coordinates of x. This graph can be seen in Figure 6.2. Notice that the system has two steady 
states: when all nodes are ON and when all nodes are OFF. All other states eventually transition to one of 
these two states.

The different processes governing the nodes of the network do not typically happen at the same time scale, 
and some of them may be stochastic, due to, e.g., low copy number. In those cases, the procedure above of 

Figure 6.2  State space graph of example network. There are 16 possible states, each represented by a rectan-
gle comprising four bars, which correspond to the network nodes in the order (A, B, C, D). A solid bar indicates 
that the corresponding node is ON, a empty bar that it is OFF. An arrow from one state to another indicates 
that upon application of the logical rules, the state at the source of the arrow transitions to the state at the tip. 
The diagram was built using the software tool PlantSimLab (plantsimlab.org).

Table 6.2  Transition table for C

A(t) B(t) C(t) C(t + 1)

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 1

1 1 0 0

1 0 1 0

0 1 1 0

1 1 1 0

Note:	 The only scenarios in which A and B exert an action on C is 
when C is expressed and A or B (or both) are expressed 
(rows 6–8).

Table 6.3  Transition table for D

B(t) C(t) D(t) D(t + 1)

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 1

1 1 0 1

1 0 1 1

0 1 1 1

1 1 1 1

Note:	 The only effect of B and C on D takes place when B and C are 
expressed and D is not expressed (row 5).



94  Boolean models in immunology

updating all the nodes at the same time is biologically not realistic. There are several possible alternatives, 
all of which, in one form or another, update variables sequentially instead. One approach to this problem is 
taken in the paper in the first case study below, where, at each time step, a sequential update order is chosen at 
random. Another approach is taken in [2], where each node is updated at a given time step with a given prob-
ability. For slow processes, this probability is lower than for fast processes. It is worth noting that applying 
sequential rather than parallel update does not change the steady states of the network, but it may well change 
periodic behavior, and it may change the trajectories from a given network state to a steady state.

Before we give a partial survey of published Boolean models of immunological processes, we describe 
in detail two published models, one at the intracellular and one at the population level, in order to give the 
reader an opportunity to become familiar with the framework described above in an immunological context.

6.2 � TWO CASE STUDIES

6.2.1 � Case study 1. Boolean models of immune responses 
against single and co-infections with Bordetella 
bronchiseptica and Trichostrongylus retortaeformis [3]

Co-infections with more than one infecting agent can alter the immune response against each individual 
pathogen and can also alter the relative severity and persistence of the infections within the host. The main 
reason is that the immune system is not compartmentalized within the host but acts as a whole to allow the 
host to maintain control of the infections as well as repair damaged tissues and avoid immuno-pathology. 
Thakar et al. [3] investigated the network of immune responses against single and co-infections with the 
respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortae-
formis. The goal was to identify representative mediators and functions that could capture the essence of the 
host immune response as a whole, and to assess how their relative contribution dynamically changes over 
time and between single and co-infected individuals.

To this end, the authors built three Boolean network models: (1) A single B. bronchiseptica infection 
model; (2) A single T. retortaeformis infection model; and (3) A B. bronchiseptica-T. retortaeformis co-infection 
model.

The network of interactions against B. bronchiseptica was based on infection in the lungs, the crucial organ 
for bacterial clearance, and constructed following knowledge of the dynamics of B. bronchiseptica infection 
in mice. The immune network mounting a response against T. retortaeformis was built on the knowledge of 
helminth infections in mice and focused on the duodenum, where the majority of T. retortaeformis coloniza-
tion and immune activity has been observed.

The networks were then developed into Boolean models in which each node was categorized by two quali-
tative states, ON and OFF, which are determined from the regulation of the focal node by upstream nodes 
given in the network. The nodes in the ON state are assumed to be above an implicit threshold that can be 
defined as the concentration necessary to activate downstream immune processes; below this threshold the 
node is considered to be in an OFF state. The regulation is given by a Boolean transfer function. For example, 
dendritic cells (DC) induce differentiation of naïve T cells (T0) by producing IL4 and IL12. IL4 is also pro-
duced by differentiated Th2 cells, and IL4 and IL12 inhibit each other. These interactions are reflected in 
Figure 6.3 [4] and modeled through Boolean functions as:
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The status of the system across time was simulated by repeatedly applying the Boolean rules for each node 
until a steady state was found. Since the kinetics and timescales of the individual processes represented as 
edges are not known, a random order asynchronous update was selected in which the timescales of each regu-
latory process were randomly chosen in such a way that the node states were updated in a randomly selected 
order during each time-step. The time-step of the model approximately corresponds to nine days. The ran-
domized asynchronicity of the model does not alter the steady states of the dynamical system but causes sto-
chasticity in the trajectory between the initial conditions and the steady states, and thus it can sample more 
diverse behaviors than synchronous models.

To explicitly quantify the interactions between B. bronchiseptica and T. retortaeformis the two single 
immune networks were connected and the co-infection network simulated as a single entity without chang-
ing the Boolean rules built for the single networks, except for the adjustments necessary for assembly. The 
link between networks was established through cytokines, which maintain the communication between the 
systemic and local immune processes as well as the cross-interactions between infections. For example, IL4 or 
IL12 can be produced by B. bronchiseptica- or T. retortaeformis-specific T subtypes or dendritic cells.

The co-infection model was verified by empirical findings. Simulations based on the model revealed, 
among other things, that a T helper cell mediated antibody and neutrophil response led to phagocytosis 
and clearance of B. bronchiseptica from the lungs. The model also revealed a few unexpected results: first, 
the faster clearance of T. retortaeformis in co-infected compared to single infected individuals, which was 
observed in the model simulations and confirmed in the empirical data. Another surprising finding based 
on the model was that B. bronchiseptica infection in the lungs was not significantly altered by the concurrent 
helminth infection, despite the increase in local IL4 expression observed in both the simulations and the 
experiment. Furthermore, perturbation analysis of the models through the knockout of individual nodes 
identified the cells critical to parasite persistence and clearance both in single and co-infections. The model, 
combined with experimental data, captured the within-host immuno-dynamics of bacteria-helminth infec-
tion and identified key components that can be crucial for explaining individual variability between single 
and co-infections in natural populations.

TrII

�1II

�2II

IL12II

IL4II
IFNgII

DCII

T0

BC

Figure 6.3  A portion of the network of immune components considered in single B. bronchiseptica infection. 
IL4II: Interleukin 4 in the systemic compartment; IL12I: Interleukin 12 in lungs; BC: B cells; DCII: Dendritic cells 
in the systemic compartment; Th1II: T helper cell subtype I in the systemic compartment; T0: Naïve T cells; TrII: 
T regulatory cells in the systemic compartment; Th2II: Th2 cells in the systemic compartment; IFNgI: Interferon 
gamma in the lungs. Figure drawn in CellDesigner. (From Kitano, H. et al, Nat Biotechnol, 23 (8), 961–966, 2005.)
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6.2.2 � Case study 2. A Boolean model of the terminal 
differentiation of B cells [5]

Terminal differentiation of B cells is an essential process for the humoral immune response in vertebrates 
and is achieved by the concerted action of several transcription factors in response to antigen recognition and 
extracellular signals provided by Th elper cells. Méndez and Mendoza [5] built a Boolean model of the regula-
tory network controlling terminal B cell differentiation and analyzed its dynamic behavior under normal and 
mutant conditions. They used experimental data from the literature referring to the key molecules involved in 
the control of terminal B cell differentiation from the precursor B cell (Naive) to GC, Mem, or PC cell types 
(Figure 6.4) [4]. The network contains 22 nodes representing functional molecules or molecular complexes, 
namely AID, Ag, Bach2, Bcl6, BCR, Blimp1, CD40, CD40L, ERK, IL2, IL2R, IL4, IL4R, IL21, IL21R, Irf4, 
NFκB, Pax5, STAT3, STAT5, STAT6, and XBP1. These nodes have 39 positive and negative regulatory interac-
tions among them.

The regulatory network consists of two sets of nodes, i.e., those pertaining to a core module integrated 
by the master transcriptional regulators of terminal B cell differentiation (Bach2, Bcl6, Blimp1, Irf4, Pax5, 
and XBP1) and a set of nodes representing several signal transduction cascades (Ag/BCR/ERK, CD40L/
CD40NFκB, IL2/IL2R/STAT5, IL4/IL4R/STAT6, and IL21/IL21R/STAT3) transmitting key external signals 
required for the control of the differentiation process. The nodes corresponding to these signaling pathways 
are active (ON) if an external stimulus is present. If an extracellular molecule is available, it is recognized by a 
specific receptor that transduces the signal via a messenger molecule, which, in turn, regulates the expression 
of the transcription factors in the core regulatory network. For example, BCR is activated by the input node 
Ag, simulating the presence of extracellular antigen and so resulting in the Boolean function

	 BCR( ) Ag( )t t+ =1 ,

which determines the next state of BCR. Furthermore, BCR cross-linking promotes ERK activation after Ag 
simulation, which is expressed as a Boolean function as

	 ERK BCR( ) ( ).t t+ =1

Bcl6 STAT5

IL-2R
IL-21R

IL-21

IL-4R IL-4

IL-2

BCR

ERK STAT3

XBP1

Blimp1

Bach2Ag

CD40 CD40L

Irf4 NF-kB AID STAT6 Pax5

Figure 6.4  The regulatory network of B cells. Figure drawn in CellDesigner. (From Kitano, H. et al, Nat Biotechnol, 
23 (8), 961–966, 2005.)
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The Boolean function of AID is an example of a more complicated regulatory relationship. AID is posi-
tively regulated by the presence of Pax5 in response to CD40 and IL-4 signals, transduced by NFκB and 
STAT6, respectively. AID is active only if its inhibitor Blimp1 is absent. This is expressed as a Boolean func-
tion as

	 AID( ) STAT OR NF- B AND Pax ANDt t t t+ =1 6 5( ( ))( ) ( ) ( )κ NOT Blimp( )( ) .1 t

To study the dynamic behavior of the system, the steady states of the Boolean models were obtained by 
exhaustively testing the behavior of the network from all possible initial conditions. The system reaches four 
steady states: The first steady state (Naive), where the nodes Pax5 and Bach2 are active, can be interpreted as 
the activation pattern of naive cells. The second steady state (GC), with high levels of Bcl6, Pax5, and Bach2, 
corresponds to the GC cell type. The third steady state (Mem), with high levels of Irf4, Pax5, and Bach2 and 
the absence of Bcl6 can be interpreted as the Mem cell fate. Finally, the fourth steady state (PC), with high 
Blimp1, Irf4, and XBP1, corresponds to the pattern of the cell type PC. The basins of attraction of these steady 
states, i.e., the collection of states that all transition eventually to a given steady state, do not partition the 
state space evenly. The percentages of initial states leading to each of the steady states are as follows: Naive = 
56.25%, GC = 6.25%, Mem = 6.25%, and PC = 31.25%. The authors suggest that the size of the basins reflects 
how a steady state can be attained from different initial configurations and may indicate the relative stability 
of each steady state.

To gain further insight into the dynamical behavior of the B cell regulatory network the authors simulated 
all possible single loss and gain-of-function mutants and evaluated the severity of each mutation by compar-
ing the resulting steady states with those of the wild type model. Loss-of-function mutations were simulated 
by fixing at OFF the value of a node, whereas gain-of-function mutations were simulated by fixing at ON the 
same activation state of a node. For each mutant, its attractors were found through an exhaustive simulation. 
The mutants were grouped according to whether a mutant effect results in the loss of one or more steady states 
with respect to the wild type model or if it results in the appearance of atypical attractors not found in the 
wild type model. The model was able to describe most of the reported mutants for the six master regulators 
that form the core of the network. For instance, the simulated loss-of-function of the Blimp1 node results in 
the disappearance of the PC attractor, which is in accordance with the experimentally acknowledged role of 
Blimp1 as an essential regulator for PC differentiation. As another example, for the Blimp1 null mutant a dis-
tinct steady state was found showing low Pax5 and high Irf4 levels. It has been reported that Pax5 inactivation 
along with Irf4 induction precedes Blimp1 expression and, while Irf4 activation is not sufficient to rescue PC 
differentiation in the absence of Blimp1, the coordinate expression of both factors is necessary for complete 
terminal B cell differentiation. Therefore, this attractor may represent a cellular state prior to the PC state.

Despite the lack of quantitative information, a Boolean modeling framework made it possible to recon-
struct the regulatory network of B cells and propose a basic regulatory architecture. This Boolean model 
proposes the existence of some missing regulatory interactions and activation states not documented in the 
literature that might play an important role in the context of terminal B cell differentiation. These interac-
tions constitute specific predictions that can be tested experimentally. Furthermore, the results suggest that 
the dynamic behavior of the B cell regulatory network is to a large extent determined by the structure of the 
network rather than the details of the kinetic parameters.

6.3 � BOOLEAN MODELS IN THE RECENT LITERATURE

The (generalized) Boolean modeling framework is being used increasingly in efforts to understand a wide 
range of processes, in particular those related to the immune system. Reviews of general techniques and 
existing Boolean models can be found in, e.g., [6,7]. It is worth noting that one of the earliest applications 
of the generalized Boolean network framework, so-called logical models, was toward the understanding 
of the immune response based on the interaction between different T cell types [8]. Here, we focus on a 
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representative collection of recently published models related to immunology. As described earlier in the 
context of [3], Boolean models have been used successfully to capture the dynamics of cell populations. At the 
molecular level, an important focus of recent modeling efforts is on signal transduction and gene regulatory 
networks, which we discuss now. We have chosen models that illustrate the capabilities of Boolean models 
beyond the basic setup described in the introduction.

One of the most exciting recent developments in the fight against cancer is a new approach to enhance 
the capability of the patient’s immune system to attack cancer cells. Several immune therapy drugs have 
been approved and have shown great initial promise. These drugs target receptors on T cells that regulate 
T cell activity through downstream signaling. On the other hand, the treatment of autoimmune diseases, 
for instance, requires the suppression of T cell activity. In either case, it is important to understand the 
signaling pathways downstream of different receptors and their cross talk. In [9], this was done for the 
signal transduction pathways for two receptors, the T cell receptor for antigen (TCR) and the interleukin-2 
(IL-2) receptor. The role of TCR is to recognize peptides bound to proteins of the major histocompatibility 
complex (MHC), encoded by the human leukocyte antigen genes (HLA) and to regulate the activation of 
T cells. In activated T cells, the production of both IL-2 and its receptor IL-2R is upregulated. The authors 
constructed a Boolean model of an IL-2R signaling pathway from information available in the literature 
(Figure 5 in [9]), and validated it with cell culture experiments, using peripheral human T cells derived 
from healthy volunteers. This network is then integrated with a TCR signaling pathway, also derived from 
literature information. The combined network includes 150 molecules and 167 regulatory relationships. 
Even though the two individual pathways are well known, a detailed study of the merged network illu-
minated several important effects of what the authors call “off-target” interactions across pathways. Since 
these two pathways are also heavily involved in T cell differentiation, this model may also shed light on the 
processes involved, possibly by combining this model with a Boolean T cell differentiation model [10], as 
the authors suggest. One might also consider combining it with the T cell differentiation model discussed 
below.

An interesting technical feature of the model is the use of two different time scales, representing interac-
tions that happen only early in the signaling process and others that happen later. The resulting two networks 
(early and late) are considered separately.

In recent years, T cell differentiation has received much attention, as new T cell types are discovered. 
The plasticity of T cells, their ability to dynamically differentiate into types with different properties, e.g., 
inflammatory or anti-inflammatory, depending on the environment makes them a versatile component of the 
immune system. A recent Boolean model of CD4+ T cell differentiation [11] models the regulatory network 
that directs the cell to one of eight phenotypes: Th0, Th1, Th2, Th17, Tfh, Th9, iTreg, and Foxp3-independent 
T regulatory cells. It is a combination of transcriptional regulation and signaling events, with the environ-
ment represented by different cytokines, obtained from the literature. Each of the different phenotypes cor-
responds to the steady state of the model for a particular choice of external parameters (cytokine presence/
absence), triggered by transient activation/inhibition of transcriptional regulation. The model was analyzed 
using model reduction techniques to reduce computational complexity, an important step without which 
large Boolean models are difficult or impossible to analyze, since the size of the state space of a model is expo-
nential in the number of nodes. The authors also validated the model by building a continuous model that 
exhibited the same basic dynamic features.

Cytokine signaling is one of the central mechanisms of the immune response and takes place via complex 
signaling cascades. In [12], the authors construct comprehensive large-scale Boolean network models for the 
signaling networks of the two pro-inflammatory cytokines interleukin 1 (IL-1) and 6 (IL-6), based on a syn-
thesis of the available literature. These are known to be involved in a multitude of processes, from the immune 
response to pathogens to cancer-related processes and the regulation of inflammatory processes linked to 
insulin resistance. The models were optimized using available proteomics data from human hepatocytes. 
Analysis of the network suggests several model modifications in order to better fit available knowledge and 
data, which can be regarded as experimental hypotheses to be pursued.
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The networks discussed so far capture signaling and regulatory cascades involved in a wide range of pro-
cesses that are part of the immune response. We conclude this section with a brief discussion of a model that 
connects the immune response to a viral, pathogen, HIV, to demonstrate how Boolean modeling can be used 
for the purpose of modeling host-pathogen interactions.

In its aim to replicate within its human host, human immunodeficiency virus type 1 (HIV-1) manipulates 
host cellular processes by interacting with proteins that are involved in signaling processes. The dynam-
ics of this process are not well understood. The focus of [13] is an effort to model the interaction of HIV-1 
with the signaling network involved in the activation of CD4+ T lymphocytes. Using the HIV-1 Human 
Interaction Database, the authors constructed a Boolean network model that included 137 proteins (16 HIV-1, 
the remainder human proteins) and 336 protein-protein interactions. The model was validated with publicly 
available experimental data, and its analysis revealed a number of key host cell factors relevant to T cell acti-
vation that can be manipulated by the virus to hijack the host’s molecular machinery.

The selection of models we have described here is only a small part of the extant literature of the recent 
past. Other articles we could have focused on, instead or in addition, include but are not limited to [10,14–23].

6.4 � THE RELATIONSHIP BETWEEN BOOLEAN AND CONTINUOUS 
MODELS

While this chapter is focused on the use of Boolean models in immunology, there are of course many continu-
ous models in this field, described elsewhere in this volume. It is natural to ask what the relationship is between 
Boolean models and models of the same biological system described by a collection of ordinary differential 
equations (ODEs). This question is quite difficult to answer in general. Concepts that are fundamental for ODEs, 
such as stability, multistationarity, etc., do not always translate in a straightforward way, in part because Boolean 
models do not typically have parameters that can be varied. Nonetheless, some results are available, which we 
review briefly. The process of constructing a Boolean model for a molecular network from available information 
typically proceeds by first constructing a wiring diagram of the network, which captures the dependency rela-
tionships between the molecular species in the network. Then, for each node, a choice must be made of a Boolean 
function that integrates the variables corresponding to each incoming edge. This function captures the regula-
tory logic of the node. The result is a Boolean network. To construct an ODE model of the same network, one 
needs to determine a continuous function for each node that represents its regulatory mechanisms, by which 
its concentration is affected by the concentrations of the input nodes. Common choices include Hill functions, 
viewing the network as a biochemical reaction network (which it might not be, if regulatory interactions are 
phenomenological and don’t correspond directly to chemical reactions). The next step typically is to estimate 
the numerical parameters in the model from experimental data and/or the literature. Thus, a significant part of 
the construction process for an ODE model and the information used is the same as that for a Boolean model, 
and so it is not surprising that there should be a relationship between the resulting dynamics. An obvious ques-
tion to focus on, which has received some attention, is a comparison of the steady states of the two model types.

The most general results about this question can be found in [24]. The main theorem, Theorem 3.4, gives 
conditions under which there is a one-to-one correspondence between a system of ODEs and a properly 
defined discrete dynamical system. One possible application of this result is the possibility to study some 
properties of an ODE model by studying instead properties of a derived discrete system. This result gen-
eralizes work done on this question in [25–28]. In [25], on the other hand, the motivation for studying this 
question was to begin with a Boolean network model and construct from it an ODE model that could be used 
for more quantitative studies of networks. Much less extensively studied are periodic attractors. One of the 
very few studies of this type is [29], in which the authors study the relationship between general attractors of 
a Boolean and a corresponding continuous system, using a case study. While the results obtained so far by 
these and other authors show that there is likely a rich relationship between these model types, much of it 
remains to be understood through a general theoretical study.
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6.5  MODEL STANDARDS AND SOFTWARE

Tools for the construction, analysis, and sharing of (generalized) Boolean models are of the utmost impor-
tance in moving the field forward. Unfortunately, in comparison to the situation for continuous models, tool 
availability is still sparse. For model sharing, standards are essential, and the development of the Systems 
Biology Markup Language (SBML) was a major advance. Unfortunately, SBML was intended initially to only 
cover models that consisted of systems of ordinary differential equations. A recent effort by the discrete mod-
eling community has resulted in an extension of SBML to discrete models [30].

Several software packages for the construction of Boolean models are available. Each has different fea-
tures, strengths, and weaknesses. Examples include GINsim [31], BoolNet [32], and the Cell Collective [33], 
to name a few. Some are stand-alone web tools, such as GINsim, others are implemented in, e.g., R or Matlab. 
The individual needs of the user will dictate the appropriate package to use.

6.6  DISCUSSION

As the survey in this chapter shows, Boolean models have been used successfully to model key aspects of the 
immune system and its role in a variety of diseases. They can be viewed as a “coarse-grained” representation 
of biological mechanisms, that is qualitative, rather than quantitative, in the sense that they provide qualita-
tive output. This drawback is balanced by the advantage that they only require qualitative input, in the form 
of relational statements between the entities to be modeled, capturing the logic of their relationships. It is 
also worth observing that, in the process of building a differential equations model of a signaling pathway, 
for example, one is forced to collect together essentially all the information needed to build a Boolean model. 
Therefore, such models can serve as a first step in a process that ultimately results in a quantitative model. In 
the end, as always with modeling, the model type to be used needs to be commensurate with the questions to 
be answered and the information and data available.

The sampling of models we discussed shows the versatility of modeling the immune system using Boolean 
networks and the richness of insights one can gain. At the intracellular level, models capture a variety of 
signaling events, most importantly signal transduction networks emanating from receptors, engaging down-
stream in crosstalk. We have included network models of the regulation of T cell differentiation and activation 
and cytokine signaling. Finally, we have seen a model that captures the interactions between a human host 
and a pathogen. At the systemic level, we have seen a model that depicts the immune response to co-infection.

The picture that emerges is one of a patchwork of models, many of which are related, especially in the 
context of T cell signaling. It is tempting to work toward larger systematic integrated models of signaling 
networks that include some of the complexity that is neglected when we look at individual pathways. This is 
to be balanced by the substantial computational cost that comes with large Boolean networks and their analy-
sis. As mentioned earlier, an analysis of the dynamics of a Boolean network requires that we explore a space 
whose size is exponential in the number of variables of the network. There are some systematic approaches 
to deal with this combinatorial explosion; see, e.g., [34]. However, even if model analysis is feasible, it is not 
always straightforward to interpret the output of large models with many hundreds or even thousands of 
nodes. Ultimately, both approaches will be required, together with modeling tools with matching complexity. 
As the immune system is playing an ever-larger role in human health, mathematical models will become an 
indispensable technology, with Boolean models as a valuable resource.
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7

From evolutionary computation to phenotypic 
spandrels
Inverse problem for immune ligand recognition

PAUL FRANÇOIS AND MATHIEU HEMERY

7.1 � INTRODUCTION

Discrimination between self and not-self is an example of complex multiscale cellular computation. Immune 
T cells have to perform sensitive and specific detection of foreign ligands (Feinerman et al., 2008a), taking 
“decision on the fly” (Siggia and Vergassola, 2013) without triggering devastating auto-immune response 
in the presence of vast amounts of self ligands (Lalanne and François, 2015). Biochemical nature of foreign 
ligands is highly diverse, and specific recognition strategies must be implemented to ensure good immune 
coverage (Mayer et al., 2015). At the population scale, immune cells must coordinate with each other to 
ensure proper organismal response (Tkach et al., 2014; Voisinne et al., 2015).

The structure of the underlying biochemical networks performing so many complex decisions appeared 
through Darwinian evolution, and we expect organization features of those networks to reflect the 
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daunting complexity of their task. It is then quite natural to ask an “inverse problem” question: given such 
biological function or other phenotypic constraints, can we predict anything on the underlying network 
structure? A priori, answering such question appears hopeless for many reasons: for instance, the pheno-
type to genotype mapping is known to be highly complex and degenerate. One could also imagine that 
networks performing such functions are so complex that only billions of years of evolution will be able 
to explore the “actual and the possible” (to paraphrase François Jacob (Jacob, 1981)) or that the specific 
network performing a biological function is just a random unremarkable element within a vast ensemble 
of possible working solutions.

A useful starting point is to consider Gene Regulatory Networks (GRN) formalism to describe dynamics 
within a cell. This approach consists in approximating gene activities by continuous or discrete variables, 
with interaction terms corresponding to regulations. Dynamics of those networks can then be simulated in 
the computer or even sometimes studied analytically, and mapping of phenotypes (i.e., dynamics of variables) 
to genotypes (i.e., parametrized interactions between variables) studied in simple coarse-grained models. 
With sufficient computational power, one can then explore all possible (small) networks corresponding to 
a well-defined biological function, as done in the examples of biochemical adaptation (Ma et al., 2009) and 
stripe formation in development (Cotterell and Sharpe, 2010). Such enumeration techniques are neverthe-
less limited because they can not deal with combinatorial explosion of interactions when considering bigger 
networks.

An alternative approach is to get inspiration from biology and search for networks using a genetic algo-
rithm (or in silico evolution) approach. Genetic algorithms use Darwinian evolution as a general optimization 
method for complex problems with many degrees of freedoms or parameters. In recent years, genetic algo-
rithms have been applied to optimization problems posed by biology itself, using GRNs inspired formalism. 
The overall idea is to automatically generate and select GRNs to build networks performing a pre-defined 
biological function, with the hope of understanding better both structure and function of actual biological 
networks. In that sense in silico evolution is an instance of two increasingly popular trends: machine learning 
(Duvenaud et al., 2013) and “automatized science” (Schmidt and Lipson, 2009; Lobo and Levin, 2015; Daniels 
and Nemenman, 2015).

Examples of in silico evolution are numerous and include but are not limited to selection for oscillators 
or multistable systems (François and Hakim, 2004), developmental networks (François et al., 2007; Fujimoto 
et al., 2008; ten Tusscher and Hogeweg, 2011), selection of modularity (Kashtan and Alon, 2005), or allostery in 
varying environments (Hemery and Rivoire, 2015). In this review, we use the example of immune recognition 
as a case-study to introduce the general method of evolutionary computation. We first define the biological 
function of interest, then introduce the general evolutionary algorithm used for this specific problem, discuss-
ing in particular the important problem of the choice of the objective function. Then we review the results of 
such evolution before finally linking to actual biology and reviewing lessons and possible extensions.

7.2 � FRAMING THE QUESTION

One of the first steps of immune response is the recognition of foreign ligands by immune T cells. The pri-
mary level of recognition is the interaction of T cell receptors (TCR) with peptides presented by Antigen 
Presenting Cells (APC). Then, depending on the nature of the ligand, T cells are activated (or not) and more 
complex immune response is triggered. The first important quantitative question is the definition (biochemi-
cally speaking) of the nature of the ligand. Years of experimental (Kersh et al., 1998; Gascoigne et al., 2001) 
as well as theoretical explorations (McKeithan, 1995) have suggested that one of the main determinant of the 
nature of ligand is the binding time τ of ligands to TCRs. Schematically, higher binding times define agonists 
(considered as foreign ligands) while lower binding times are non agonists, defining the so-called “lifetime 
dogma” (Feinerman et al., 2008a). It should be pointed out immediately that this is a simplification of a com-
plex reality, see e.g., (Lever et al., 2014; Govern et al., 2010) for exceptions to this rule; however, recent chimeric 
receptors built with DNA indeed confirm the existence of a very sharp discrimination based on binding times 
(Taylor et al., 2017). Importantly, the decision is characterized by a “golden triangle” of properties:
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●● sensitivity: only few ligands can trigger response,
●● specificity: a three-fold change of binding time τ separates agonist from non-agonist, suggesting dis-

crimination is based on relative values of τ compared to a critical binding time τc,
●● speed: decision is reached within a couple of minutes at most.

The combination of these properties raises an interesting problem: how can we have “absolute discrimi-
nation” (François and Altan-Bonnet, 2016) purely based on τ and (almost) independent from ligand concen-
tration? We would naively expect that more ligands (irrespective of their binding times) would create more 
“signal”, so why do the tens of thousands of ligands just below binding time threshold not trigger response 
while only a few ligands above threshold do? Furthermore, this picture is complexified by the existence of 
antagonism: not only do ligands with binding times just below τc not trigger a response, but it is also known 
that they antagonize the response of agonists (Altan-Bonnet and Germain, 2005). These different properties 
are summarized in Figure 7.1.

Before our work, a complex quantitative model recapitulating all these properties was proposed in 2005 
by Altan-Bonnet and Germain (Altan-Bonnet and Germain, 2005). It relies on the exhaustive description of 
the many biochemical components of the system and of their interactions. The three main components of 
this model are:

●● a kinetic proofreading backbone, as first proposed in this context by McKeithan (McKeithan, 1995), 
allowing for amplification of differences based on τ,

●● a negative feedback loop mediated by the tyrosine-protein phosphatase SHP-1, putting a “brake” on 
cascade progression,

●● a positive feedback loop mediated by an extracellular signal-regulated kinase (ERK) that relieves the 
SHP-1 brake allowing for full decision.

Importantly, this model accounts for the golden triangle, experimental antagonism, and was later used in 
a predictive way to study the digital/analog components of this signaling cascade (Feinerman et al., 2008b). 
However, despite later theoretical attempts (Lipniacki et al., 2008), the origin of the different quantitative 
properties remains obfuscated. For instance, is there any simple way to understand what defines the critical 
binding time for response τc? Are we doomed to “hairball” biology (Lander, 2010), where multiple biochemi-
cal interactions emerge in an intractable way into phenotypes, or can we envision methods to unknot those 
interactions to get more intuitive understanding?

This is a typical case where the relative simplicity of the observed phenotypes (discrimination based on τ 
value irrespective of concentration) allows for an inverse problem approach, starting with a genetic algorithm.

Specificity
agonist ligands bind as little as 3

times better than non-agonist

Speed
activation occurs

within
~30s of T:APC

Sensitivity
3 ligands

are sufficient to
trigger activation

No
response

A
nt

ag
on

ism

Sp
ec

ifi
ci

ty

Response

(Agonist)

Sensitivity

Li
ga

nd
s p

er
 c

el
l

Binding time

104

103

102

101

101100

100

APC

MHC

TCR

T Cell

τ–1

(a) (b) (c)
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7.3 � GENETIC ALGORITHM

Our algorithm mimics the three essential pillars of evolution: selection, reproduction, and mutation. The 
algorithm presented here has been successfully applied to study a wide range of problems in signaling and 
development, reviewed in (François, 2014). In the Appendix, we give a very simple illustration of this algo-
rithm on a basic biological function.

In summary, starting from an initial population of networks, we begin by ranking them according to a 
score function, traditionally called fitness, that measures the performance of each network at a predefined 
goal. Then in order to mimic the action of Darwinian selection, we cut the population to only keep the best 
half and duplicate it, randomly inserting mutations during the duplication step. This last step gives the next 
generation that serves as initial population for the next iteration of the process as depicted in Figure 7.2a.

This type of algorithm is of very general usage and may be applied in nearly every optimization problems, 
albeit its usefulness may vary from field to field. Three main components should retain our attention: namely, 
the description of the network, the mutation operator, and the fitness function. We now describe each of these 
parts in detail in our chosen example of early immune response.

7.3.1 �N etwork definition and biochemical grammar

Many choices are possible to simulate a given biochemical network. Including all possible proteins in a given 
pathway (similar to what has been done in (Altan-Bonnet and Germain, 2005)) would be in principle possible, 
but would be too computationally expensive for network exploration with in silico evolution. Rather we evolve 
so-called “phenotypic models” (François et al., 2013; Lever et al., 2014), by considering some minimal set of 
coarse-grained interactions necessary for the complex functions of interest. This implements a compromise 
between the necessary freedom to generate many classes of possible models while being small and tractable 
enough to be functionally understandable yet predictive of biology.

The immune problem we consider here consists in the single cell detection of ligands by immune T cells. 
The networks considered simulate biochemical interactions in response to ligand exposure within a single 
T cell. We consider only phosphorylation/catalytic networks: the assumption is that the time-scale consid-
ered is small enough so that the total number of proteins does not change much during a recognition event 
by a T cell. However, these proteins can be interconverted into different forms, based on catalytic interactions 
with other proteins.

Possible interactions are:

●● in the cell, we assume there is an ensemble of kinases or phosphatases that can be themselves phos-
phorylated multiple times or dephosphorylated. We make a “well-mixed” assumption, meaning that the 
concentration/activity of each of these proteins is described by one single number for the whole cell.

●● at the surface of the cell, the ligand-receptor complex can be itself phosphorylated or dephosphorylated 
multiple times, to mimic the multiple phosphorylation states of the Immunoreceptor Tyrosine-based 
Activation Motifs (ITAMs)—the functional intracellular part of the receptor. We will call Ck the ligand 
receptor complex phosphorylated k times. Phosphorylations and dephosphorylations are implemented 
by the shared pool of kinases or phosphatases inside the cell.

●● we include a dissociation rate τ –1 of the ligand from the receptor. This dissociation rate will be characteris-
tic of the ligand’s nature and the basis for discrimination between ligand quality. We make the important 
assumption that upon ligand dissociation, the receptor gets immediately and fully dephosphorylated. This 
phenomenologically implements a kinetic segregation mechanism (Davis and van der Merwe, 2006), and 
is known to be the basis for ligand proofreading (as first proposed by (McKeithan, 1995)).

Within our computational formalism, a network is represented by a graph of biochemical species (typi-
cally proteins) and interactions (e.g., ligand receptor interactions). This graph is bipartite: proteins can only 
be linked to interaction and interaction to proteins. Possible interactions are randomly combined by the 
algorithm yielding families of complex networks, an example shown in Figure 7.2b.
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Given this network, we are able to derive the dynamical equations governing the concentration of each 
species and integrate them numerically to determine the response of the system for a given set of input. In our 
biological example, the inputs are both the concentration and the type of the ligand τ (allowing us to explore 
the phase diagram of Figure 7.1c). One species in the network is taken as the output, and the fitness function 
is computed on it (see below).

7.3.2 �N etwork dynamics

The representation of the network allows us to construct the set of differential equations that corresponds to 
the dynamic of the system. In order to do so, we introduce one variable for each free species in the system and 
then look at the different reactions in the network to determine the rate of interconversion of this species. As 
an explicit example, assume kinase K phosphorylates species S into Sp with rate α(K) = αK, while phosphatase 
P dephosphorylates Sp into S with rate β(P) = βP, then we write the dynamical equations:

	
S PS KSp= −β α 	 (7.1)

	
S KS PSp p= −α β 	 (7.2)

Note that  S Sp+ = 0  meaning that total number of phosphorylated plus unphosporylated species is con-
served. We also assume that phosphorylations work far from saturation, explaining why the respective 
interconversion rates are linear in S and Sp. We write similar equations for every single biochemical species 
accounting for all their interactions, and turn to a numerical solver to compute the whole dynamic of the 
system. This dynamic will be used to determine the course of evolution through the fitness function.

Again, our choice of formalism strikes a balance between a detailed description of the system and the 
need to keep a tractable computation time. More detailed stochastic or molecular dynamics like-simulation 
would induce a great expense in computation time, which would make evolutionary exploration impossible. 
Furthermore, there is no real reasons to opt for such a refinement given the fact that the large number of 
receptors at the surface of a cell will result in an averaging of all the quantities we are looking at, implying that 
our equations might already capture the relevant behavior of the system. Eventually, once a working struc-
ture has been obtained, more refined stochastic simulations can be made to check that the evolved structure 
works within a more detailed framework and under more realistic assumptions (Lalanne and François, 2013; 
François et al., 2013). A completely opposite limit would be to read our network not as chemical reactions but 
as a Boolean network performing binary operations, the different species being only present or not. This has 
effectively been done for other mechanisms and can give good results, but in the present problem, we expect 
discrimination to be first based on an analog computation based on the continuous biochemical parameter τ, 
so it is natural to consider continuous differential equations.

7.3.3 �M utation list

At the beginning of the evolutionary simulation, we have to specify the kind of mutations that can act on a 
network during simulated Darwinian evolution. Those mutations are:

●● Modification of parameters. The most obvious modification that our network does is to change the 
value of an existing parameter, e.g., the rate of phosphorylation of a given species.

●● Adding/Deleting a species. The algorithm may also add a new kinase/phosphatase to the network, at 
first it may play no role in the network but it offers a basis for new future evolutionary innovations.

●● Adding/Deleting an interaction. New interactions are added to the network by linking existing spe-
cies, defining a new interaction. Here, there are only two kinds of interactions: phosphorylations and 
dephosphorylations of kinases/phosphatase in the system or of receptors. Note that appending a phos-
phorylation step to the complex receptor-ligand corresponds here to the addition of a proofreading step.
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●● Choose a new output. The nature of the output considered for fitness computation itself is under 
mutation, and can be changed during the course of evolution. For instance, it could potentially be any 
complex in the receptor phosphorylation cascades, or a free kinase/phosphatase. Not constraining the 
output is another way to unleash evolutionary forces as much as we can.

Possible mutations are illustrated on Figure 7.3. Relative mutation rates (i.e., the probability of muta-
tions) are predefined by the user for a given simulation, and the algorithm is generally run in a regime where 
modifications of parameters are much more probable than changes of network topologies, and where removal 
of interactions are much more probable than addition of new biochemical species or interactions. We also 
rescale mutation rates at each generation so that on average there is one mutation per network per generation: 
this prevents an uncontrolled combinatorial explosion of the network (due to the fact number of interactions 
increases quadratically with number of biochemical species present) and implements the phenomenological 
Drake rule that mutation rates (inversely) scale with genome size (Lynch, 2007).

7.3.4 �M utual information as fitness function

The success of evolutionary computation crucially resides in the choice of the fitness function, namely the 
function that allows us to rank the different networks with respect to their performance in the task of ligand 
discrimination. Apart from the obvious fact that this function should describe a form of discrimination, it 
should also be loose enough in order to start sorting the network even at the very first step of our numeri-
cal evolution, a point at which the networks are still very simple and—truly speaking—perform very badly. 
Moreover, the fitness function must be as abstract as possible in order not to guide evolution in a predefined 
implementation of the function. In short, we want to let evolution express its creativity!

A natural formalism to formulate the discrimination problem here is the information theory developed 
by Shannon (Shannon, 1948), which offers quantitative ways to assess questions such as “How well does the 
output of our network correlate with the nature of the input ligand”? Or more precisely, how much informa-
tion about the ligand do I have by looking at the steady state concentration of some output?

For the sake of clarity, let us take a first simple example (unrelated to biology). I roll a die twice and 
announce that the sum is 6. What can you say about the value of the first roll? What if the sum is not 6 but 12? 
It is clear that even if there is an unknown variable (here the result of the second roll) you can extract some 
piece of information from the sum of the two rolls. For instance, if we know the sum is 6, we are sure that the 
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Figure 7.3  The different kinds of mutation of our algorithm, acting on the network of Figure 7.2, are depicted 
here. Ligation and dephosphorylation, for example, have modified parameters. The algorithm has also changed 
the topology of the network: the cross indicates deletion of an interaction and its child species, a kinase has been 
added as well as a new phosphorylation step of the main complex. Moreover, the output of the system has changed.
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first result cannot be itself 6, so we have (slightly) reduced the uncertainty (or increased the information) on 
the first die. If we know the sum is 12, both dice should be 6 so we have maximum information (and 0 uncer-
tainty) on the first die. Now, imagine we can add a hypothesis: if we know the second die is strongly loaded 
and only results in 1 or 6, we then are almost certain that the first die rolled a 5 if the sum is 6.

In information theory, the key concept of entropy, defined by Shannon (Shannon, 1948), is a measure 
for the unpredictability of a random event. The higher the entropy of this event, the less predictable it is. In 
communication theory, this is also a convenient measure for information because the more unpredictable an 
event is, the more “characters” you would need to describe this event in a written message. Roughly speaking, 
entropy is a measure of this number of characters.

To have a usable measure, Shannon designed it to be additive, meaning that the entropy of two events 
should be the sum of the entropy of each one. As is well known, adding two independent events means mul-
tiplying the possibilities: the logarithm thus seems to be a good function to express this. For example, the 
entropy of a fair six sided die may be log(6), two dice would have an entropy of log(62) = 2 log(6), as it should be.

The complete formula extends this definition to non-uniformly distributed events. The entropy of a dis-
crete random variable X is defined as:

	
ε( ) ( )log ( ( )),X p X x p X x

x X

= − = =
∈

∑ 2 	 (7.3)

where p(X = x) is the probability of the output x. We take the log2 because it is the more widespread in 
information theory due to the very binary nature of the used tools. But using any other logarithm would 
not change the picture. The unit of entropy (with log2) is the Shannon or Bit. Entropy quantifies the uncer-
tainty about a random event. An entropy near 0 means that there is practically no uncertainty: the event is 
highly predictable. Conversely, an event that is uniformly distributed between 2N states has an entropy of 
–∑N1/2Nlog22N = N bits.

When dealing with several variables, the correct concept to use for such problems is the mutual informa-
tion. The mutual information of two discrete random variables X and Y, is defined as

	

I X Y p x y p x p y
p x y

y Yx X

( , ) ( , )log ( ) ( )
( , )

,=






∈∈
∑∑ 2 	 (7.4)

It measures the amount of information, expressed in bits, that you can acquire about one of the two vari-
ables by reading the other one. Mathematically we can express mutual information as the difference of two 
entropies:

	 I X Y X X Y( , ) ( ) ( )= −ε ε | 	 (7.5)

where we have introduced ε(X|Y), the entropy of X conditional to the knowledge of variable Y.* So we see that 
mutual information has an intuitive meaning: it is the difference between the uncertainty that we have on X 
with the uncertainty that we have on X if we know another variable Y. To come back to our previous example, 
X would be for instance the value of the first die, while Y would be the value of the sum of the dice. If X and 
Y are totally independent unrelated events, the uncertainty we have on X does not change if we know Y, i.e., 
ε(X|Y) = ε(X), which means that the mutual information is 0 as expected. If conversely, Y completely deter-
mines X, then ε(X|Y) = 0 (no uncertainty on X) and we see that the mutual information I(X|Y) = ε(X) and is 
maximum, as entropy is a positive quantity.

*	 Defined as ε( | ) ( ) ( | )log ( | )X Y p Y y p X x Y p X x Y
x Xy

= − = = =( )



∈∑ 2

∈∈∑ Y
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Coming back to the immune discrimination problem, the first die (X) corresponds to the nature of the 
ligand (agonist or non agonist, called T), the unknown information the concentration of the ligand, and the 
announcement of the sum (Y) to the concentration of some output of the biochemical recognition network 
(that we call o). That gives

	
I T O p o p p o

p o
o OT

( , ) ( , )log ( ) ( )
( , )

=




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∈∈
∑∑ τ τ

τ
τ

2 	 (7.6)

	 = −ε ε( ) ( | )T T O 	 (7.7)

Assuming we fix ε(T), then having maximum mutual information between type and output concentrations 
means that ε(T|O) (uncertainty of the type given the Output value) should be minimum, i.e., the knowledge of 
the Output concentration completely determines the type of ligands. This is what we expect from a biochemical 
decision process where for instance some internal switch unambiguously distinguishes between two situations.

We ran our evolutionary computation with I(T,O) as objective function to maximize (once O has reached 
steady state). Now the value of the mutual information clearly depends on the distribution of ligands pre-
sented to the cells (i.e., not only the probability P(T) but also the possible ligand concentrations presented to 
the cells). Unfortunately, we do not know precisely what these distributions are, so (conservative) assump-
tions should be made. For computational evolution, we chose a uniform distribution of log-ligand concentra-
tions (to account for the fact that discrimination should be possible over large range of ligand concentrations), 
and probability 1/2 to have agonist (defined by binding time τ = 10s) or non agonist (defined by binding time 
τ = 3s). Figure 7.4 illustrates possible distribution of ligands and binding times with different mutual informa-
tion: panel B is more “bimodal” than panel A, and the corresponding mutual information is higher, meaning 
there is more information on the nature of ligands encountered.

7.4 � RESULTS OF EVOLUTIONARY COMPUTATION

At the very beginning of the evolutionary simulation, the network is initialized with a simple ligand-receptor 
interaction, which gives a first ligand-receptor complex that we call C0. Then the algorithm randomly imple-
ments different network modifications based on a biochemical grammar defining all possible interactions 
within a network as described previously and selects them based on the mutual information fitness described 
in previous section.
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Figure 7.4  Example of mutual information computation for two different output responses. On each panel, the 
left curve describes the typical response to a non-agonist ligand and the right one to an agonist ligand. The 
intermediate curve represents the output of the system when both types can be seen with equal probability. 
The left panel shows a mutual information between the output and the ligand type of IM = 0.32, while the right 
one has IM = 0.60, highlighting the fact that the intermediate curve on the right panel is more bimodal and 
hence more informative about the type of ligand encountered.
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7.4.1 �A daptive sorting

Apart from the junk networks* that unavoidably appear through the course of evolution, the core mechanism 
that performs the function of interest is always the same for all of our runs. This surprising fact is a good 
advocate for the use of inverse problems to unravel the mystery of biological system. For a given function, the 
number of typical implementations that can be found through evolution may actually be quite low. This not 
only means that we may hope to recover the correct architecture through our in silico evolution, but also that 
the same kind of solution may appear in various context—an intuition that will be reinforced later—making 
the detailed analysis of a particular problem even more fruitful.

The benchmark to analyze our results will be the golden triangle of selectivity, sensitivity, and speed. The 
network should correctly separate the correct and the false ligand irrespectively of their concentrations and 
in a time that is comparable with the one found in real system. For example, the kinetic proof reading (KPR) 
mechanism that was first proposed in (McKeithan, 1995), despite displaying interesting properties with 
respect to the selectivity does not account for the sensitivity in the range of concentration found in vivo and 
would need much longer times than effectively observed as discussed in (Altan-Bonnet and Germain, 2005). 
We ran the genetic algorithm using mutual information between type of ligands T and number of Outputs 
O as an objective function to optimize for our networks. Simulations very systematically converge towards a 
simple category of networks, which is depicted in Figure 7.5 (Lalanne and Francois, 2013). The core network 
is built upon a one-step KPR mechanism: the antigen starts binding with the receptor to form the complex C0 
which then produces the complex C1 corresponding to our output. Building upon this KPR mechanism, the 
unphospho-rylated complex C0 controls the activity of the kinase K responsible for its own phosphorylation. 
This is done through the regulation of the phosphorylation of K. The feedforward loop thus created effectively 
controls the output so that it depends mainly on r irrespectively of the ligand concentration (see curves for dif-
ferent τ on Figure 7.6a’). To understand why, we need to write down the equations for the three main species:
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Introducing KT = K + K*, the total concentration of K, the last line gives K K
C

T=
+


δ 0

 at a steady state, which 

would be clearer if we introduce C* = 
δ

 so that K K C
C C

T=
+

*

*0
. Then, the second line gives the final output

	
C K C C

C CT1
0

0
=

+
α τ *

*
, 	 (7.9)

which, while still being a function of C0, is already very informative about the behavior of the feedback loop. 
Indeed, it appears a function of the form f x x

x
( ) =

+
α

α
 which has two obvious asymptotes with f ≃ x for x << 

a and f ≃ x for x >> a. This means that our network introduces a threshold concentration C* above which the 
network saturates, effectively buffering the high concentrations to a predefined level. Most importantly, the 
saturation level is

	 C K Csat
T1 = α τ* 	 (7.10)

*	 This term is of course reminiscent of the well-known junk DNA. It is similar in his causes as it is produce by the very 
structure of the evolutionary algorithm as a part which is under no real selective pressure and so just remain here appar-
ently without purpose. Now, this junk DNA may actually be quite useful, providing raw material for the evolution to 
build upon. The same is probably true for our own networks but have not been quantified.
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i.e., is proportional to τ. Thus, C1 realizes a direct measure of τ almost independently from ligand concentra-
tion! One can then imagine that a downstream sensor can measure the level of C1 and triggers a response 
when it is higher than a predefined threshold, i.e., C1 ≥ Θ. Thus, the threshold of detection for the binding 
time r is directly defined by:

	
τ

αc
TK C

= Θ
*

	 (7.11)

The key mechanism to explain this is the incoherent feedforward loop (Mangan and Alon, 2003) between 
the complex and the kinase that perform its phosphorylation. The term incoherent here means that the com-
plex C0 effectively restrains its own phosphorylation in order to buffer the effect of high ligand concentration 
on the final output. This renders the concentration of C1 almost insensitive to the ligand concentration L 
presented: this is indeed a well-known mechanism in classical biochemical adaptation, see e.g., (François and 
Siggia, 2008; Ma et al., 2009), thus the name of “adaptive sorting” for this absolute discrimination process. 
Lastly, it should be pointed out that in this model, different receptors are independent with respect to ligand 
binding, but coupled via the kinase K that is assumed to be shared between all receptors.

By construction, adaptive sorting satisfies specificity and sensitivity. Speed is related to an implicit issue: 
the low number of molecules implicated. If we want to detect a small number of ligands L, in a more realistic 
setting, we should observe huge stochastic fluctuations in the number of biochemical species of the detec-
tion network, and this can only be filtered out by more or less sophisticated test (e.g., (Siggia and Vergassola, 
2013)). We chose a conservative approach where we assumed that some variable is present to average fluctua-
tions: then indeed decision can be taken in at most a couple of minutes even with very low ligand concen-
tration (Lalanne and François, 2013). So in the end adaptive sorting is a simple elegant solution naturally 
realizing the golden triangle of Figure 7.1.

7.4.2 �A ntagonism

But an interesting phenotypic surprise lies at the heart of the adaptive sorting solution. Despite the fact that 
this was not explicitly selected for* in the adaptive sorting model, ligands below threshold of detection τc are 
antagonists, very similarly to what is observed in reality (François et al., 2013; François and Altan-Bonnet, 
2016). This is illustrated on Figure 7.6a”: when cells are exposed to ligands below thresholds τc, one needs 
many more agonist ligands to trigger response.

*	 And as it is a detrimental feature, we would never think of selecting our networks for that!
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Figure 7.5  (a) The adaptive sorting mechanism as represented by our algorithm and (b) a corresponding 
more intuitive biological reaction scheme. The kinetic proofreading part of the network is depicted in bold, 
the incoherent feedforward loop that transform it into an adaptive sorting mechanism is depicted in grey. 
(Adapted from François, P., and Altan-Bonnet, G., Journal of Statistical Physics, 162(5), 1130–1152, 2016.)
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Antagonism has a very simple and intuitive explanation: it originates from the existence of the shared pool 
of kinase K. When one type of ligands is present, deactivation of kinase K exactly balances direct induction 
of signal, to give rise to a response that is concentration independent but sensitive to binding time τ. When 
several types of ligands are presented, they still all deactivate kinase K. But then ligands below threshold yield 
less signal than ligands above threshold, so that the overall response is lower. Thus ligands below threshold 
“antagonize” ligands above threshold.

Mathematically, calling C and D the complex corresponding to ligands above (Lf,τf) and below (Ls,τs) 
threshold simultaneously presented to the same cell, we have now
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At steady state, we thus have K K C
C D C

T=
+ +

*

*0 0
 so that in the limit where C0 + D0 >> C⁎, the total phosphory-

lated receptor is
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Now imagine that τs is very small, then
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which means that if decision is based on thresholding of this variable, we are farther below threshold and 
thus might lose response. This effect is clearly coming from the presence of D0 in the denominator of the 
left hand side of Equation 7.14, accounting for the fact that ligands below threshold decrease K but do not 
contribute to final signaling because of low τs.

Putting realistic numbers together, an extra difficulty appears: with realistic biological parameters, even 
self ligands (with τ ≃ 0.1s) would be strong antagonists with the simple adaptive sorting scheme, and thus 
immune detection in presence of self ligands would be impossible! To solve this last conundrum, we turned 
to computational evolution again, by re-running all our simulations so that our networks should perform 
detection in the presence of self ligands. A natural solution appearing in evolution is simply to add a couple of 
proofreading steps, upstream of the control of kinase K (Figure 7.6b). For instance, if there are N total proof-
reading steps and m steps upstream of K, we now get for the output variable:
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In that case, if τs << τf, contributions of D0 on both the numerator and the denominator are negligible com-
pared to C0, which means that detection in presence of subthresholds ligands is possible because antagonism 
is strongly mitigated (compare Figure 7.6a” and b”). So while proofreading appears crucial as first proposed 
by McKeithan (McKeithan, 1995) it is in an unexpected way: proofreading helps detection primarily by pre-
venting antagonism by self. An analogy can be made using decision theory: in McKeithan’s original model, 
proofreading ensures that self ligands do not trigger response, i.e., “decreases” the possibility of false positives 
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due to self. In adaptive sorting, proofreading ensures that decision can be taken despite presence of poten-
tially antagonizing self, i.e.,  “decreases” the possibility of false negatives due to self.

Connections to decision theory for those models have been more formally studied in (Lalanne and 
François, 2015). Finally, when performing evolution in presence of self, new solutions appear where the buff-
ering role of K is played by phosphatases instead of a kinase.

7.5 � LINKING BACK TO BIOLOGY AND EXTENSIONS

Once principles have been identified by computational evolution, one can check if candidates for the different 
processes at the heart of adaptive sorting exist in actual TCR recognition network.

7.5.1 �A  negative feedback model for recognition by T cell

The kinetic proofreading backbone is generally assumed to correspond to successive phosphorylations of 
ITAMs on receptor intracellular domains (Kersh et al., 1998). Fast dephosphorylations are due to kinetic 
segregation mechanisms (Davis and van der Merwe, 2006). This connection was actually implicit in our 
biochemical grammar.

Adaptive sorting presented in previous section predicts an internal loop, where an early complex in the 
cascade prevents further phosphorylations via titration of a kinase (i.e., repression of an effector). In the real 
system, it seems a phenomenological similar effect is the activation of the SHP-1 phoshpatase (i.e., consisting 
in the activation of a repressor). SHP-1 has been clearly established as a negative component of the system in 
seminal papers by Dittel et al. (Dittel et al., 1999), and Stefanová et al. (Stefanová et al., 2003). Most of this 
negative effect has been shown via antagonistic experiments, where recruitment of SHP-1 by receptors bound 
to antagonist ligands leads to dephosphorylation of ITAMs. Furthermore, this effect is infectious within the 
same cell: once SHP-1 is active, it can act even on receptors unbound to antagonist. Later quantitative experi-
ments have refined this view, and in particular have shown how level of SHP-1 modulates response (Altan-
Bonnet and Germain, 2005). In particular, increase of SHP-1 activity has been associated to a “digital” loss of 
response (Feinerman et al., 2008b) when negative effects overwhelm any possible activation.

This led us to propose a simplified phenotypic model including only kinetic proofreading and negative 
influence by SHP-1 (François et al., 2013) (Figure 7.6c). Behavior of this model is very similar to adaptive sort-
ing, with a “flattening” of dose response curve over several orders of magnitude of ligand concentration at the 
threshold for binding time τc (Figure 7.6c’). A difference with adaptive sorting models is that SHP-1 acts on 
all proofreading steps, while we need kinase K to be specific to one proofreading step in models of Figure 7.6a 
and b. Thus, in some sense, the more realistic immune model represents a parsimonious solution implement-
ing adaptive sorting with non-specific enzymes.

This model is semi-analytic and reproduces all aspects of absolute discrimination by T cells described 
in this chapter: sensitivity, specificity, speed, and antagonism (Figure 7.6c” and (François et al., 2013) for an 
experimental study). It is also able to recover the digital loss of response seen in (Feinerman et al., 2008b) 
when SHP-1 is over-expressed. Interestingly, a new prediction of this model is that for intermediate activity 
of SHP-1, response might be lost first at high concentration of ligands, yielding a non-monotonic response 
curve, which has been indeed checked experimentally (François et al., 2013).

7.5.2 �T he actual and the possible: Phenotypic spandrel 
and generalization to other systems

It thus appears in retrospect that the principle of adaptive sorting derived by our computational approach is at 
the core of early immune recognition. We also saw how some internal negative variables can act as a “brake” on 
the system and are responsible for antagonism. Antagonism appears to be detrimental to the system because it 
can prevent agonists from triggering response. Furthermore, even when we select against antagonism in our 
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evolutionary simulations while new proofreading steps appear, there is still some antagonism for subthresh-
old ligands (Lalanne and François, 2013). Can we get perfect discrimination without antagonism?

The answer to this question is no, under broad generic assumptions. One can simply show mathematically 
(François et al., 2016) that a biochemical system with the ability to sort chemical compounds with respect to 
a kinetic parameter τeff, independently from their concentration, presents two properties:

●● independence of concentration for detection implies that they are biochemically adaptive right at the 
threshold τc for detection of chemical parameter τeff,

●● because of this biochemical adaptation, antagonism necessary ensues.

The reason why antagonism derives from biochemical adaptation is rather intuitive: if the response of a 
system is biochemically adaptive, i.e., does not depend on stimulus concentration, then some variable in the 
system buffers for ligand concentration to ensure a completely flat dose response curve (see e.g., (François and 
Siggia, 2008; Ma et al., 2009)). This internal variable then plays the exact same role as the kinase described in 
the above section on adaptive sorting: when it is activated by subthreshold ligands, antagonism ensues. This 
is completely independent of the specific biochemistry of the system. Interestingly, it turns out that we can 
find other systems potentially performing absolute discrimination, with completely different biochemistry, 
that indeed display antagonism as expected. For instance, in another immune context, FCRєRI signalling 
pathways display a so-called “dog in the manger effect” (Torigoe et al., 1998), where ligands sub threshold 
have been shown to indeed titrate the kinase responsible for the activation of the response, which is exactly 
the effect predicted by adaptive sorting.

Thus, the theory developed in (François et al., 2016) ends up fully solving the inverse problem of absolute 
discrimination under fairly general assumptions: adaptive sorting, defined as an adaptive process combined to a 
τ sensitive mechanism, is the generic solution to the absolute discrimination problem close to threshold τc. It can 
nevertheless be implemented biochemically in many different ways (some examples are given in (François et al., 
2016)). However, adaptive sorting appears as a local property in a specific region of parameter space at τ = τc. It 
does not preclude more complex non-linear effects for different τ: for instance, for the simplest linear model, 
antagonism grows when τ gets further below threshold (François et al., 2016), while for proofreading-based 
models, antagonism reaches a maximum slightly below threshold, then entirely disappears for ligands with very 
small τ. Finally, for more realistic biochemical models, absolute discrimination might not be perfect and work 
only for relatively high L ligand concentrations, but interestingly antagonism can still be observed, indicating 
that the associated mathematical constraints persist even for imperfect discrimination (François et al., 2013).

Finally, turning back to evolution, the fact that antagonism always works hand in hand with absolute dis-
crimination is reminiscent of the classical “spandrel” debate in evolutionary biology. Gould and Lewontin 
(Gould and Lewontin, 1979) proposed in the late 1970s that not all functional biological traits result from evolu-
tionary adaptation. Their idea was that some phenotypes could simply come as a byproduct of the “true” selected 
phenotypes, just as the elaborated spandrels of the Basilica San Marco in Venice were primarily the architectural 
consequences of the positioning of domes on pillars. They argued that many complex phenotypes might simply 
be consequences of deeper evolutionary constraints. In turn, these spandrel phenotypes might be later tinkered 
by evolution, leading to the notion of exaptation (Gould and Vrba, 1982). So it could potentially be that many 
complex biological features are first born as spandrels, and studying the origin of spandrels might be crucial to 
understand macroevolution in general. Our mathematical study (François et al., 2016) thus clearly establishes 
that antagonism in our evolutionary simulations indeed is a spandrel of absolute discrimination, showing that 
evolutionary computation can indeed lead to interesting insights on evolution itself (François and Siggia, 2012).

7.6 � WHAT WE HAVE LEARNED

Based on the example of immune recognition at the level of the gene regulatory network, we have shown 
in this chapter how the joint use of phenotypic models and genetic algorithm can help us to derive simpli-
fied principles—here the “adaptive sorting” model for immune recognition. With a broader view, it appears 
that once we succeed to identify the abstract goal of evolution-discriminating ligand irrespectively of their 
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concentration for our example, such procedure may give us much simpler pictures and deeper insights than 
what was first expected. This success comes from the use of evolutionary computation approach as a method 
for performing the inverse problem of biological systems, an approach that is finally close to the original 
thought of the father of genetic algorithm (Holland, 1992). It is likely that other problems can be formulated 
in a similar way, and by such a combination of numerical simulations and pen and paper reasoning we might 
be able to highlight the meaningful flow of information hiding beneath the hairball of biological interactions.

This method not only helps us to understand the very basis of system such as adaptive sorting, but, by com-
paring our result to the known biochemistry of the system and refining our hypotheses to account of those 
facts, it also reveals the role of the different parts of the real system in a modular fashion. In our example, the 
upstream proofreading step appears to be a response to the presence of self as can be seen as it evolves to avoid 
the detrimental effects of antagonism, only when this feature of the environment is explicitly introduced in 
our model. Similarly, we can go back to our pens and build a model where some hypothesis are relaxed, on 
specificity of phosphorylations. This allowed us to reformulate a simplified realistic model of what happens 
in real immune detection.

On a more fundamental level, we might expect that the existence of “phenotypic spandrels,” that is the 
appearance of complex features as by-products of the physical and chemical constraints from another evolved 
trait may be a general principle of evolution. The antagonism is so tightly linked with the absolute discrimina-
tion that each case of evolved absolute discrimination exhibits its own form of antagonism. This allows us, at 
a more abstract level, to connect several systems with completely different biochemistry, and thus we might 
have discovered a unifying principle of absolute discrimination. At an even higher scale, this suggests that 
spandrels might be give important constraints on evolution, as first intuited by Gould and Lewontin (Gould 
and Lewontin, 1979; Gould and Vrba, 1982). We have been able at least in this situation to formalize and 
confirm this intuition.

APPENDIX
As a textbook example for evolutionary computation of a gene network, let us look a simple example: a bio-
logical “chronometer,” estimating the duration of a given signal. How can a purely transcriptional network 
measure duration? Our algorithm is tailored to answer such questions. To frame the problem, we assume 
there is an input signal. We take the simplest possible form: a gate function. The input thus has a value I 
between time 0 and τ and is 0 otherwise. We would like our system to have an output where we could read τ 
independently of the level of I.

To evaluate the performance of a given network, we launch several integrations (tries) for different value of 
the parameters τ,I and collect the final value of one predefined output Of. Then we fit the function Of = Aτ and 
take the squared error as a measure of how well the network allow us to read the time up to a multiplicative 
constant (the lower, the better):
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A
f
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1
2

	 (7.16)

where A has been fit over all the tries.
After several generations, some of our runs are found to have a very good performance (see Figure 7.7). The 

networks that constitute the population of working networks are quite complex. We can then (manually or 
automatically) modify several parameters while preserving their performance and prune the networks. After 
removing every unnecessary part, we end up with the simplest working network, where an output with a very 
low degradation rate is simply activated by the input. A simple equation for this network is:
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dt

r I
I h

O
n

n n=
+

− δ 	 (7.17)



References  119

Indeed, if the output starts from 0 and δ ≃ 0, the level of the output will simply time-integrate when the 

signal is present O t r I t
I t h

dt
n

n n

t

( ) ( )
( )



′
′ +

′∫0
. To get rid of the I-dependency, the activation is saturated even for 

low value of I, i.e., h ≃ 0 so that O ≃ rτ. During an evolutionary run, activation of O by I is first selected, then 
parameters are optimized so that both δ and h go to 0. This situation exemplifies many of our evolutionary 
simulations: while solutions found can be very simple, they are quite robust and furthermore there might be 
some hidden constraints (here saturation of activation with respect to I) that are biologically predictive and 
might not be obvious a priori for more complex problems.
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8

Zen and the art of parameter estimation 
in systems biology

CHRISTOPHER R. MYERS

8.1 � INTRODUCTION

A mathematical model describes a space of possibilities. As this volume illustrates, models come in many 
shapes and sizes, and discerning an appropriate form of a model for a given problem is in many ways as much 
art as science, suggested by an intuitive feel for a problem and a drive to distill the important degrees-of-
freedom needed to capture some phenomenon of interest. Alongside the poetry of identifying an ideal model 
form lies the more prosaic work of estimating the values of parameters that provide reality to that form.

Broadly speaking, mechanistic mathematical models typically consist of state variables, interaction rules 
among those variables, and parameters that quantify aspects of those state variables and interaction rules. 
Parameters dictate the space of possible model outputs, given a specified model structure. Thus, parameters 
represent a class of model inputs that impact what possible predictions a model can make. Parameter estima-
tion is the process by which a modeler, having identified a plausible model structure, endeavors to determine 
the numerical values of parameters within that model in order to be able to assess model outcomes. As such, 
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parameter estimation is an aspect of inference, and typically refers to a process of fitting parameters to data 
through their collective effects in a model; if one were able to measure parameters directly and with sufficient 
certainty, one would simply use those measured values as parameter inputs. But for many biological systems 
of interest, carrying out such measurements is not easy or may not be possible, and one is left instead with the 
process of reverse engineering plausible parameter values from measurements of state variables (or functions 
thereof) rather than forward simulation based on experimentally determined parametric inputs.

Many models of interest in the field of systems biology contain many unknown parameters, resulting 
in high-dimensional parameter spaces that must be characterized, with complex structure that is not well 
understood. Understanding such structure, and how it impacts the predictivity of models and the potential 
for the construction of alternative models, is an active area of research. I will begin by providing an overview 
of some of the mechanics of parameter estimation, although “mechanics” more perhaps in the style of Zen 
and the Art of Motorcycle Maintenance [1] than in that of the Chilton manuals for auto repair. Just as impor-
tantly, however, I will also endeavor to consider parameter estimation within the broader context of model-
ing, to describe how it relates to model construction, inference, selection, reduction, and analysis. I will close 
with some thoughts about the somewhat fractured and multifaceted field of systems biology, highlighting 
how issues of parameterization and parameter estimation lie at the crossroads of different schools of thought.

Even though I will mostly address mechanistic models of cellular processes, many of the concepts and 
techniques introduced here are broadly applicable to a wide range of models relevant not just to immunology 
and systems biology, but to other fields as well [2]. In the field of immunology, this might include statistical 
models, or descriptions at other levels of biological resolution, such as models of the population dynamics of 
pathogens replicating within hosts, or spreading among hosts [3]. Where possible, I will endeavor to point out 
generalities and abstractions that are useful across different classes of models, while also noting some of the 
particular aspects that arise in analyzing complex cellular networks.

8.2 � THE MECHANICS OF PARAMETER ESTIMATION

8.2.1 �E stimating parameters from data

Let us assume that we have a set of M state variables x(t) = x1(t),…, xM(t). Since we are focused here primarily 
on dynamical models, we assume there are a set of initial conditions x0(t = 0), and a prescription for solving 
for the dynamics of the system at later times. If our model is deterministic, this prescription might involve 
formulating and integrating a set of coupled ordinary differential equations (ODEs) describing the time rate 
of change of chemical concentrations; if the model is stochastic, we might instead use a stochastic simulation 
algorithm such as Gillespie’s method [4] to step the system forward in time. The particular trajectory that 
the system traces out in its state space will also depend on the choice of model parameters. We will denote 
this set of N parameters θ = θ1,..., θN and denote the trajectory’s dependence on parameters as x(t;θ). The goal 
of parameter estimation is to infer the numerical values of the parameters θ based on available data. For the 
case of deterministic dynamics described by ODEs, the state variables will unfold in time according to the 
dynamical equation dx/dt = f(x,t;θ), where f reflects the sum of all the reaction fluxes in and out of the states.

Experimental data might reflect individual state variables at specific time points xi(tj;θ), or they might 
reflect functions of multiple state variables. Often, one is able to measure the abundance of some chemical 
entity, but is unable to distinguish its participation in different molecular compounds or states; in such a case, 
the relevant observed quantity would reflect some weighted sum of individual state variables. In other cases, 
data might be available on reaction fluxes, which are (potentially nonlinear) functions of state variables. We 
might have measurements of the system under different experimental conditions, such as with different ini-
tial amounts of chemical species, or in a mutant where we have knocked out or overexpressed some particular 
component. Let y to c j,

* ( )  represent the value of observable o in condition c at time tj; denote the uncertainty of 
that measurement as σo,c(tj); and let yo,c(t;θ) represent the corresponding predictions of the model for a given 
set of parameters θ. We are interested in finding a choice of parameters θ for which the model trajectories 
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y(t;θ) best approximate the measured values y tjo c,
* ( ). We can define a cost function C(θ) that represents the 

squared deviation of a given set of model predictions from the data:

	

2*1
2

C(θ) =
o,c,tj

yo,c (tj ; θ) − yo,c (tj)

σo,c (tj)
,

where tj refers to the timepoints at which the data are measured. The best fitting parameter set θ* is that which 
minimizes the cost: θ* = argmin[C(θ)].

In statistics, one is often interested in computing the likelihood of a particular model, that is, the prob-
ability of observing the particular data measured given a set of parameters θ. If the model residuals are inde-
pendent and normally distributed, then the cost function C(θ) corresponds to the negative logarithm of the 
likelihood P(Data|θ), where “Data” refers here to the full set of measured observables [5]:

	

11 exp
2

P(Data|θ) = 
o,c,tj o,c,tj2πσ

−
2*yo,c (tj ; θ) − yo,c (tj)

σo,c (t)

Minimizing the cost C(θ) corresponds to maximizing the likelihood function. Different statistical frame-
works emphasize different aspects of this data-fitting problem: frequentist statistics typically focuses on esti-
mating the parameters that maximize the likelihood, while Bayesian statistics uses the likelihood to estimate 
the posterior distribution, reflecting the probability of estimating different sets of parameters given the data. 
A nice discussion that emphasizes distinctions between frequentist and Bayesian statistical treatments of 
parameter estimation for models in systems biology can be found in [6].

Our goal is not just to fit the data, however, since the whole point of building a model is to be able to make 
predictions about situations for which we do not have data. One common pitfall in parameter estimation is 
overfitting, typically from having an overly complicated model with many parameters that can fit the existing 
data very well but which has poor predictive performance on unseen data. In such a case, the data are often 
“overfit” in the sense that the power of the model is used to fit random fluctuations in the data rather than the 
underlying trend of the data. Having laid this groundwork, we will now consider parameter estimation in the 
context of some specific models of biological networks.

8.2.2 � Examples: JAK-STAT signaling and Epo receptor 
trafficking

Information processing lies at the core of many important biological functions, implemented by molecular 
networks supporting signal perception and integration. A central function of the immune system is to pro-
cess signals in the environment and to decide whether those signals are associated with self or non-self. An 
important class of perception and signaling networks, relevant both to immune system function and other 
biological processes, is the JAK-STAT pathways [7,8]. JAK-STAT signaling involves the perception of extra-
cellular ligands (cytokines, growth factors, etc.) by membrane-bound receptors (so-called Janus kinases, or 
JAKs) that trigger the activitation of an intracellular molecular complex that subsequently translocates to 
the nucleus and affects gene transcription (so-called signal transducers and activators of transcription, or 
STATS). A schematic figure of this pathway is shown in Figure 8.1(a). This basic structural theme is played out 
again and again throughout systems biology, although this relatively simple signaling architecture is more 
reminiscent of bacterial two-component signaling systems [9] than the more deep and elaborate signaling 
cascades that have evolved in animals. In mammals, there are seven different JAK proteins and four different 
STATS. Therefore, this basic architecture can in principle be instantiated in various forms by combining dif-
ferent JAKs and STATs, although this molecular flexibility can also introduce the possibility of crosstalk among 
different components [10]. Whereas engineered communication systems can be constructed to support efficient 
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and nonambiguous codes [11], living systems that communicate through the interaction of many paralogous 
components evolving through duplication and divergence face the nontrivial challenge of communicating 
reliably in the face of constraints posed by crosstalk [12,13].

The development and analysis of mathematical models of JAK-STAT signaling has a rich history in the field of 
systems biology, with particular relevance to the problem of parameter estimation. Owing largely to the work of 
Timmer and colleagues, various models of JAK-STAT pathways have been constructed, fit to experimental data, 
and used to assess new theoretical and computational tools for parameter estimation and sensitivity analysis. 
Much of this work has centered on the JAK2-STAT5 pathway, which is involved in detecting the growth factor 
erythropoietin to stimulate the production of red blood cells.1 The original JAK-STAT signaling model devel-
oped by Timmer and collegues [14,15] emphasized the importance of inference through “databased modeling,” 
and worked through a series of related models to demonstrate the importance of STAT recycling from the 
nucleus back to the cytoplasm and time delays associated with that process. That model has been used as an 
application example on parameter estimation in various software packages, such as the SBML-PET Parameter 
Estimation Toolkit [16], SloppyCell [17,18], and Data2Dynamics [19]. Raue et al. examined this same model in 
their use of the profile likelihood to analyze structural and practical parameter identifiability [20]. Vanlier et al. 
used the model and underlying data to probe the relationship between parameter estimation and experimental 
design [21]. And Toni and Stumpf revisited JAK-STAT signaling as an application example to highlight their use 
of Approximate Bayesian Computation [6]. Readers interested in both the details of JAK-STAT signaling and the 
intricacies of parameter estimation are encouraged to dig through that rich history of research.

I will consider briefly a related model, involving not the downstream signaling through the JAK-STAT pathway, 
but the regulation and trafficking of membrane-bound receptors involved in Epo recognition at the gateway of 
JAK-STAT. Signaling networks are not static scaffolds along which information is communicated (as is often the 
case with our hard-wired engineered systems), but are instead dynamic entities themselves subject to regulation 
and control, as indicated schematically in Figure 8.1(b). The regulation and organization of membrane-bound 
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Figure 8.1  (a) Schematic of the JAK2-STAT5 signaling pathway (Adapted from Swameye, I et al., Proceedings 
of the National Academy of Sciences of the United States of America, 100(3), 1028–1033, 2003.), in which binding 
to extracellular Epo induces recruitment and phosphorylation of intracellular STAT5 via JAK2. Phosphorylated 
STAT5 dimerizes and translocates to the nucleus, where it regulates expression of target genes, followed by 
recycling of monomeric STAT5 back to the cytoplasm. (b) Schematic of receptor trafficking, involving the deg-
radation and recycling of receptor proteins and ligands; an example is EpoR trafficking (Adapted from Becker, 
V. et al., Science, 328(5984),1404–1408, 2010.), in which bound Epo-EpoR complexes are internalized, and either 
degraded or recycled back to the membrane as free EpoR.
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receptors is important in a number of problems in systems biology [22,23,24] and their misregulation is sometimes 
implicated in diseases such as cancer, where an excess of growth factor receptors can lead to enhanced rates of cell 
growth. The model in question here was developed by Becker et al. as part of a larger study considering Epo recep-
tor (EpoR) trafficking [23]. I will address here only the “core” model presented in [23]. The dynamical equations for 
the core model described the concentrations of various molecular states and complexes:
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While the model contains these six state variables, experimentally the authors were only able to measure 
pools of Epo in various compartments: Epo in the extracellular medium (Epo_medium = [Epo] + [dEpoe]), 
Epo at the cellular membrane (Epo_membrane = [Epo-EpoR]), and Epo in the interior of the cell (Epo_cells = 
[Epo-EpoRi] + [dEpoi]).

8.2.3 �D ata fitting

The actual process used by the authors for parameter estimation for this Epo receptor trafficking model is 
much more complicated than the simplified analysis that I will present here [23]. A variety of different assays 
were carried out to characterize and estimate subprocesses within the model, such as the binding of Epo to 
EpoR. In addition, multiple model variants were developed (the “core” model, the “core model + kmob,” and the 
“auxiliary” model), and parameter estimation was performed simultaneously for both the core and auxiliary 
model. I will not delve into all the complexity of the estimation process presented in [23], but will simply use 
the model and some of the data to illustrate some basic points.

As noted, experimental data are available characterizing the levels of Epo in various pools in three differ-
ent locations: extracellular, on the membrane, and internal to the cell [25]. Experiments provide these levels 
at six time points (ranging from approximately 1 to 300 minutes after introduction of Epo) for three repli-
cated versions of the experiment. From the replicated data, we can estimate the average levels of Epo in each 
location and at each time point: if we have no intrinsic information about the uncertainties inherent in the 
experimental data, we can estimate uncertainties in these mean quantities by computing the standard error 
of the triplicate points. From these 18 data points and their uncertainties, we can estimate the best-fitting set 
of model parameters. In [23], the parameter Bmax was fixed based upon estimation from other data, as was the 
ratio of KD = koff /kon; in this example, I will leave koff and kon as separate parameters and fit them to the time-
course data. Thus the set of parameters to fit includes: kt, kon, koff , ke, kex, kdi, kde. Using SloppyCell, a Python 
package we have developed to support the simulation and analysis of reaction networks, I can import the 
SBML version of the core model deposited by the authors at BioModels.net (BIOMD0000000271.xml, which 
encodes the reaction network and associated kinetic laws in the dynamical equations above), define a model 
which links together the experimental data and the model, add some priors to keep the parameters within 
broad ranges identified by the authors, and optimize the parameters to fit the data. Details on these sorts of 
operations can be found in the SloppyCell user’s guide (http://sloppycell.sourceforge.net/user.pdf). The best-
fit time-courses for the three observables are shown in Figure 8.2(a).

http://sloppycell.sourceforge.net
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Much of the power that one gains in dissecting complex biological systems arises from the ability to per-
turb such systems in a sufficiently diverse set of conditions so as to tease apart the contributions of different 
components and subsystems. If every such condition required estimation of an entirely new and disjoint set 
of parameters, nothing would be gained by combining different experiments. For example, suppose one could 
alter the pH within a cell, and conduct a series of experiments at different pH levels, but without having a 
model that incorporates the effects of pH directly, and with no idea how model parameters should vary as a 
function of pH. Every experiment would effectively be independent of all others, involving a different and 
unrelated parameter for each pH, even if all models shared the same underlying mathematical structure.2 
Fortunately, many experimental perturbations are often local in nature, affecting a node or an edge in a bio-
chemical reaction network. In such a situation, one can fit data to different variants of a reaction network, dif-
fering only in these local perturbations. Unless there is reason to think otherwise, one can fit these multiple 
variants of a network—each of which makes different predictions about the specific experimental conditions 
relevant to that variant—to multiple datasets. More concretely, if we knock out some component of a network, 
we expect to be able to estimate the same numerical values for parameters elsewhere in the network that 
are not involved in that knockout. Different model variants that share parameters can typically have those 
parameters fit to system-specific data across all relevant experimental conditions.

In order to fit model parameters across sets of different conditions, one needs to coordinate the integration 
of experimental data with the appropriate model variants, running each model variant separately to fit the 
relevant data. One advantage to using existing tools targeted specifically for parameter estimation in reaction 
networks is that there is often support for that sort of data integration. The SloppyCell system, for example, 
stitches together objects representing collections of Experiments with objects representing collections of 
Calculations in order to carry out the combined inference. The Data2Dynamics system provides additional 
intelligence in this regard, automatically creating model variants for different experimental conditions and 
organizing output data accordingly [25,27]. These sorts of multi-experiment parameter estimation problems 
can be complicated in their structure, however: witness the different sets of experiments and estimation pro-
cesses involved in Epo receptor trafficking discussed in [23]. The field of systems biology has been accelerated 
through the development of a standard format for the specification of reaction network models (the Systems 
Biology Markup Language, or SBML (sbml.org)), and there have been related efforts to develop additional 
ontologies and formats to standardize other aspects of the modeling process (e.g., characterization of simula-
tion time courses, http://sed-ml.org). Given the importance of parameter estimation to the modeling process 
and the potential complexities inherent in carrying it out in practice, it might be worthwhile for the commu-
nity to focus on the development of standard formats and data structures to organize parameter estimation 
activities, to enable the reuse and exchange of data, metadata and models for parameter estimation in the 
same way that SBML facilitates the reuse of the underlying model specifications themselves.

8.2.4 �O ptimization

Abstracted appropriately, the specific form of a mathematical model is irrelevant insofar as the numerical opti-
mization of the cost function is concerned, as long as it can evaluate the least-squares deviation of a model 
from data for a given set of parameters θ. Optimizing an arbitrary nonlinear function of a set of variables is a 
widespread problem throughout all of science, and accordingly, much algorithmic and development work has 
been devoted to producing numerical tools capable of carrying out this essential computational task. Numerical 
optimization is something of an art: there is a vast set of different algorithms that one might possibly make 
use of, and determining which is most appropriate for a given problem can require a bit of experimentation. 
Perhaps the most relevant distinguishing feature among different algorithms are those that are capable of iden-
tifying global optima and those that make do with finding local optima. In some cases, there can be multiple 
distinct local minima of the cost function C(θ) separated by barriers of higher cost. This can complicate the 
process of finding the global minimum, especially since most numerical minimization routines move locally 
downhill. Some optimization algorithms are in fact designed to avoid getting stuck in local minima, and one 
can often use local methods in conjunction with multiple independent restarts in order to converge to different 
minima. Several of those methods are addressed specifically in the context of biological parameter estimation 

http://sed-ml.org
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in [28] and [27]. A more subtle complication in finding a global minimum, even in cases where there may be 
no other competing local minima, arises from a near degeneracy in the cost function near the minimum. This 
degeneracy is often associated with long, thin canyons in parameter space, resulting in multiple different combi-
nations of parameters that are able to fit the data within the underlying uncertainty, along which the numerical 
values of individual parameters might vary wildly. I will return to this issue in more detail below in describing 
parametric sloppiness, but note here that in some cases a detailed understanding of the structure of cost surfaces 
under evaluation can lead to the development of novel optimization algorithms that exploit that structure, such 
as those involving geodesic flow along model manifolds [29].

8.2.5 �S ensitivity analysis

Parameter sensitivity analysis quantifies how model trajectories depend upon variations in parameters. 
Formally, one can differentiate the dynamical equation for a system of interest with respect to parameters, 
and then reorder derivatives to arrive at a set of sensitivity equations for the parametric derivatives that can 
be solved alongside the underlying dynamical equations:

	

∂ ∂x ∂x
∂x
∂f ∂f

∂θ ∂θ∂θ∂t
= +

Carrying out this sensitivity integration with analytically calculated derivatives is generally preferable 
to numerically estimating such sensitivities using finite-difference approximations to derivatives by impos-
ing small variations on parameter values. Finite-difference approaches to sensitivity analysis generally do a 
poorer job of characterizing complicated cost surfaces, especially those plagued with long, thin, shallow can-
yons. Tools such as SloppyCell and Data2Dynamics calculate these analytic derivatives from the underlying 
kinetic laws and reaction network topology, supporting sensitivity integration.

One is not limited to characterizing sensitivities with respect to single parameters, and deeper insights come 
from considering the collective effects of interactions among parameters. This can be done by examining the struc-
ture of the Hessian matrix of parametric second derivatives Hij C i j= ∂ ∂ ∂2 / θ θ  or its approximation J T J, where J rep-
resents the Jacobian matrix of first derivatives. Local sensitivities to combined parameter variation can be assessed 
by computing the eigenvalues and eigenvectors of H, as described in detail elsewhere [5,30]. For the Epo-EpoR 
trafficking model, sensitivity integration can be used to compute J T J, and subsequently its eigenvalues and eigen-
vectors. Figure 8.2(b) shows the “stiffest” parameter combination associated with the fit of the Epo-EpoR model to 
the experimental data, that is, the eigenvector associated with the largest eigenvalue of J T J. Nonlocal exploration of 
parameter space can be undertaken using parameter sampling approaches, as described below.

8.2.6 �P arameter sampling, posterior distributions, 
and identifiability

Identifying a single set of parameters which best fits the available data does not acknowledge that other 
parameter sets might be almost as effective in describing observations. Within the framework of Bayesian 
statistics, one aims to ascertain posterior distributions on parameters, that is, the probability of parameters 
(and hence a model) given the available data. Bayes’ theorem, along with the ability to compute the likelihood 
of the probability of the data given the parameters, allows us to compute the posterior distribution P(θ|Data):

	 P Data P Data P Data( | ) ( ) ( | )θ θ∝

Markov Chain Monte Carlo (MCMC) sampling can be used to explore parameter space, sampling from 
the posterior distribution to identify an ensemble of parameter sets that fit the data within the experimental 
uncertainty [30,5]. For the Epo-EpoR model, Figure 8.2(b, inset) shows a projection of such an ensemble in 
the kon, koff plane. While the distribution of kon values is well-localized about a central value, the values of koff 
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vary by several orders of magnitude. In the original Epo-EpoR paper, however, additional binding kinetics 
data were incorporated into the estimation process that enabled the authors to estimate and fix a value for the 
dissociation constant KD = koff /kon.

The goal of parameter estimation is to identify the values of model parameters, but this is often confounded 
for a variety of reasons. The subject of “parameter identifiability” (or, of greater concern, nonidentifiability) 
addresses such issues [31,32]. Typically a distinction is made between structural nonidentifiability and practical 
nonidentifiability. Structural identifiability refers to the way that two or more parameters enter into the math-
ematical structure of a model; for example, if two parameters only ever enter a model in terms of their ratio or 
their product, then the separate values of those parameters cannot be determined. Mathematically, relationships 
associated with structural nonidentifiabilities correspond to zero modes of the Hessian, that is, eigenvectors of 
the Hessian matrix of second derivatives of the cost function H Cij i j= ∂ ∂ ∂2 / θ θ  with zero eigenvalue. In such 
cases, it is best to first mathematically reformulate the problem in order to replace nonidentifiable parameters.

Practical nonidentifiability is a more subtle problem, involving parameters that are not strictly degenerate 
but which are difficult to disentangle in practice. A canonical example of this arises in problems with a separa-
tion of time scales, such as in the case of binding-unbinding kinetics that is fast compared to other reactions. 
I will return to the issue of practical nonidentifiability below in the context of sloppy parameter sensitivities.

8.2.7 � Quantifying prediction uncertainties

One constructs a model in order to make predictions, and thus for those predictions to be testable through fur-
ther experimentation, it is necessary to indicate what it means for the model to be wrong. (Of course, “all models 
are wrong” [33], so it may seem odd that I would need to delineate under what conditions any particular model is 
wrong.) But to test predictions, we need to quantify the uncertainty of those predictions, given the information 
they are built upon. Just in the same way that uncertainties and errors can be propagated through simple arith-
metic calculations, we can propagate parameter uncertainties (derived from the sorts of sampling procedures 
described above) through the action of mathematical models, in order to specify model prediction uncertainties.

Either the local analysis of sensitivities, or the nonlocal sampling of parameter space, can be used to esti-
mate prediction uncertainties. Figure 8.2(c), for example, shows a set of trajectories for [Epo_membrane] for 
the parameter sets contained in the sampled ensemble. Even though some parameters in the ensemble vary 
considerably, the ensemble of trajectories shows much less variation.

It should be noted that much of the machinery described above assumes that there are experimental data 
available to fit to. Often there are, and clearly one will be on uneasy ground making predictions from models 
that are not built on a foundation of experimental verifiability. Nonetheless, the reality is that many math-
ematical models are published with parameters that are not systematically fit to data, but which are instead 
estimated based on values in the literature or assumed to be of the right order of magnitude based on data. 
One is often nonetheless interested in understanding the sensitivity of model predictions to parameters (e.g., 
to suggest possible perturbations of interest) and can use many of the same methods described above. In this 
case, we are interested not in fitting to experimental data, but rather to synthetic data generated by the model 
itself.

8.2.8 �R esources for parameter estimation in systems biology

Several excellent treatments and reviews of many of the issues touched upon here are available in the litera-
ture, with specific application to mechanistic systems biology models [5,6,28,34]. A summary of lessons learned 
in computational approaches to parameter estimation—with specific application to the JAK-STAT and EpoR 
models discussed above—can be found in [27]. In addition, while parameter estimation is a generic problem 
in many different areas of mathematical modeling, software tools specifically engineered to support param-
eter estimation and related analyses in the area of systems biology are available in several packages, including 
Copasi, Data2Dynamics, ABC-SysBio, the MATLAB SimBiology toolbox, and SloppyCell. Many such systems 
make use of the SBML standard for encoding models of reaction networks, which facilitates not only model 
interchange but also model meta-analyses such as those contained in [35] and [36]. The Data2Dynamics website 



132  Zen and the art of parameter estimation in systems biology

contains numerous examples that weave together computational models and associated experimental data for 
fitting, and the ABC-SysBio system is described in considerable detail in a protocol article describing its use [37].

8.2.9 �S tochastic models

Most of the discussion here has focused on deterministic descriptions of biological processes, whereby a given 
choice of parameters and initial conditions always leads to the same set of model predictions. Models of this sort, 
typically in the form of coupled ODEs describing the dynamics of molecular concentrations, are most appropri-
ate when fluctuations are insignificant, although they are sometimes used even if that is not the case due to the 
relative ease with which they can be analyzed. Investigation of a stochastic model is complicated by the fact that 
(a) system trajectories will vary from realization to realization [4], and (b) solving the master equation for the 
joint probability distribution characterizing those variable trajectories becomes prohibitively expensive as the 
system size grows due to the combinatorial explosion of the configuration space [38]. The process of parameter 
estimation for stochastic models is further complicated by the fact that estimating the likelihood is not as trac-
table as for the case of deterministic models with normally distributed noise. A discussion of inference methods 
for stochastic models is beyond the scope of this article, but several useful theoretical descriptions and compu-
tational tools supporting these types of analyses are available [37,39,40,41,​42,43].

8.3 � PARAMETER ESTIMATION AND THE PROCESS OF MODELING

Having laid out some of the basic procedures involved in parameter estimation (and pointed to references where 
much more detailed and expert descriptions are available), I will now step back to examine how the process of 
parameter estimation relates to other aspects of modeling. As noted above, parameter estimation is not an end 
in itself, but a means to an end of making predictions about new behaviors or analyzing the structure of existing 
behaviors. As such, parameter estimation functions as an inner loop in service of these other goals.

8.3.1 �S loppiness and the geometry of parameter sensitivities

I alluded above to long, thin canyons in high-dimensional parameter spaces, and collective interactions 
among parameters in the sensitivity of model predictions to parameter variation. These features are related to 
a phenomenon that my colleagues and I have termed “sloppiness,” whereby system dynamics are very insen-
sitive to some particular combinations of parameter changes while being very sensitive to others; see Figure 
8.3(a). This wide range of sensitivities, involving a few stiff modes that determine system dynamics and a large 
space of sloppy modes that do not impact system behavior, is seen in a number of complex, multiparameter, 
nonlinear models [2,30,35]. This anisotropy in parameter sensitivities can be quantitatively characterized by 
the eigenvalue spectrum of the Hessian matrix as described above, which has a characteristic form where the 
eigenvalues decay by a roughly constant factor, implying that only a few stiff modes contribute significantly 
[44]. Parameter ensembles generated by MCMC sampling can exhibit large variation in individual param-
eters, some fluctuating by many orders of magnitude over an ensemble [45]. These parameters are practically 
nonidentifiable, but it is possible for a model with a set of widely divergent parameter estimates to nonetheless 
show well-constrained model predictions. This is counterintuitive, since one usually expects that if one puts 
junk into a model (in the form of un-characterized parameter values) one would expect junk out (in the form 
of useless predictions). But sloppiness reveals that due to internal redundancies and correlations in parameter 
sensitivities, constrained and therefore testable predictions can often be made from sloppy models. More 
recent work by Transtrum, Machta, and Sethna has extended this theory by combining insights from sloppy 
models with techniques from differential geometry and information geometry to characterize the underlying 
manifolds associated with how models map from parameter space to data space [29,46].

There are a variety of implications arising from this characteristic geometric structure of sensitivities. 
Unless all model parameters can be well-constrained through other measurements, model predictions can 
vary substantially if even one parameter is not so constrained [35]. Efficient sampling of parameter space in 
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MCMC requires taking step sizes in different directions consistent with the underlying anisotropy [47]. As 
described in some more detail below, simplified models with better-identified parameters can be constructed 
using model reduction procedures that leverage the hierarchical structure of model manifolds. And we have 
hypothesized that sloppiness in complex biological networks might provide a mechanism for evolution to 
explore extended parametric neutral spaces, allowing for robustness to some types of parameter variation 
while enabling evolvability of new phenotypes [26].

8.3.2 �M odel inference, refinement, selection, and reduction

Traditionally, parameter estimation has served as a separate inner loop within the broader processes of model 
construction, inference, refinement, selection, and reduction. One posits a model structure, attempts to fit 
parameters in that model, and refines the model structure if it is unable to describe the data. A model success-
fully fit to data can be used to make predictions about unseen scenarios, although whether those predictions 
are falsifiable depends on how constrained they are by the available data. (New scenarios might involve, for 
example, different initial conditions, or the knockout, inhibition, or overexpression of particular model com-
ponents.) Upon making a falsifiable prediction about a new condition and testing it experimentally, one will 
find either that the prediction is validated, or that it is not. Those experiments might suggest possible changes 
to the model structure, as well as contribute additional data to feed into the parameter estimation pipeline.

A key aspect of model inference, as a first step, and model refinement subsequently is experimental design 
[48,49]. In some cases, separate experiments can be carried out in order to estimate particular parameter val-
ues and then fix those values in subsequent efforts to estimate other parameters from different types of data; 
the multistage estimation efforts carried out in [23] and [50] are representative of this approach. A significant 
part of the experimental design literature aims to address issues of parameter non-identifiability. Within the 
context of the sorts of sloppy parameter sensitivities described above, papers by Tonsing et al. [51], Apgar 
et al. [52], and Hagen et al. [53] have demonstrated that appropriate design of experiments can reduce most 
of the uncertainty in parameter estimates observed in sloppy models, albeit by introducing more complex 
sorts of experiments [5]. That is, despite the ubiquity of sloppiness arising in parameter estimation for many 
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Figure 8.3  (a) Schematic of the cost surface of a sloppy model (Adapted from Gutenkunst, R.N. et al., PLoS 
Computational Biology 3(10), e189 EP, 2007.), projected on a two-dimensional parameter subspace (θ1, θ2). 
Curved lines/ellipses represent contours in the cost surface C(θ) in the vicinity of the best-fit set (large black 
dot). Stiff directions are directions in parameter space where system behavior changes rapidly with param-
eters; in sloppy directions, behavior is largely insensitive to parameter variations. The anistropy of the cost 
contours is proportional to the square root of the eigenvalues of the Hessian matrix. Gray dots represent other 
parameter sets near the cost minimum, generated by MCMC sampling. (b) Schematic depicting model reduc-
tion via the manifold boundary approximation method (Reprinted with permission from Transtrum, M.K., and 
Qiu, P., Physical Review Letters, 113(9), 098701, 2014. Copyright by the American Physical Society). The manifold 
associated with N-dimensional parameterization of the full model is bounded by lower-dimensional facets, 
edges, and corners. Model reduction proceeds by repeatedly flowing to boundaries and lumping parameters 
together in accordance with the zero mode that emerges at the boundary, resulting at each step in a new 
model with one less parameter.
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different models, it is not intrinsic, as both model reparameterizations and targeted experiments can result in 
identifiable parameters. Motivated by the sense that constraining prediction uncertainties is a more fruitful 
endeavor than constraining parameter uncertainties per se, Casey et al. used experimental design techniques 
to propose and test new measurements needed to optimally reduce prediction uncertainties for a molecular 
complex identified as relevant to the regulation of EGF receptor trafficking [24].

Model selection refers broadly to the process of deciding from among a set of competing models based on their 
ability to describe available data and to make testable predictions about unseen data. Likelihood ratio tests are one 
common method for formally characterizing the goodness of fit of different competing models; the early papers 
on modeling the JAK-STAT pathway, for example, show this practice in great detail [14]. In situations where a 
large amounts of training data are available, cross-validation is a common approach to model comparison: some 
portion of the available data are included in a training set for parameter estimation, while the remaining data are 
left out for validation. Unfortunately, while technological advances have placed some facets of biology squarely in 
the land of Big Data, parameterization of many complex dynamical models of biological networks is still usually 
on more barren terrain, often with barely more data points than parameters to be estimated.

The term “model selection” also refers somewhat more specifically to methods for deciding among 
different structural models that contain different numbers of parameters. Within this latter context, one 
acknowledges that structurally different models are inherently unequal, in that one might expect a more 
complex model to be more able to fit existing data simply because it contains more fitting degrees-of-freedom. 
(Although the caveats of having complicated models that overfit the data must be heeded.) In this sense, 
model selection echoes Occam’s razor, a principle encouraging the development of parsimonious descrip-
tions, in which “Entities must not be multiplied beyond necessity” [54]. Additional model complexity in the 
form of parameters should be pursued only if those additional degrees-of-freedom provide sufficient extra 
predictive capacity to warrant their inclusion, and various methods have been developed which effectively 
penalize larger models. Some mathematical approaches are based either on information theory (leading, for 
example, to the Akaike Information Criterion (AIC) for model selection) or Bayesian statistics (resulting in 
the Bayesian Information Criterion (BIC)). An excellent recent overview of methods for model selection, 
with specific application to the sorts of dynamical models of interest in systems biology, can be found in [34].

While the inner loop of parameter estimation is relatively automated and robust (the challenges described 
above notwithstanding), the process of model refinement can be rather slow, laborious, and require human inter-
vention. This has led some researchers to develop creative new procedures that aim to couple the processes of 
structural inference, parametric inference, model selection, and model reduction into more synergistic wholes. 
The automated discovery of model forms highlighted by Francois and colleagues [55,56] integrates parameter 
estimation directly into the broader mode of structural inference. Kuepfer et al. advocated the role of “ensemble 
modeling” that examines not just sets of parameters within a single model structure, but more broadly ensembles 
of model structures [57]. Sunnaker et al. have combined exploration of parameter space with simplication of 
models, recognizing that quantitative changes in some parameters that act as edge weights connecting different 
components can lead to qualitative and topological changes in reaction networks with fewer edges [58].

A promising new model reduction procedure (the manifold boundary approximation method), recently 
introduced by Transtrum and Qiu [59], makes use of insights into the hierarchical hyperribbon structure of 
model manifolds in complex models. These high-dimensional manifolds, which map from parameter space 
to data space, are typically bounded by lower-dimensional surfaces (facets, edges, corners, etc.) that represent 
simpler models with fewer parameters. The interior of the manifold is characterized by a number of sloppy 
modes with small but not strictly zero eigenvalues. The manifold boundaries, on the other hand, are associ-
ated with zero modes in the full model. The model reduction procedure involves flowing along geodesics on 
the manifold until a boundary is reached, and inspecting the resulting zero mode that separates out from 
the spectrum. The associated eigenvector describes a relationship among a subset of parameters that can be 
used for parameter removal. For example, the binding-unbinding kinetics in the Epo-EpoR model described 
above can be simplified—in the limit that the rates kon and koff are much faster than other rates—by a single 
parameter, the dissociation constant KD = koff /kon. This simplification of the model corresponds to a bounding 
facet of the manifold with one fewer parametric degree-of-freedom than the original model. This procedure 
can be repeated, leading to smaller and smaller models, as depicted schematically in Figure 8.3(b); the process 
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is terminated when all effective parameters in the model can be identified from the available data and any 
further reductions lead to a loss of predictive power. Not only can complex models be considerably simplified, 
but the effective parameters that result through such a procedure are themselves functions of the underlying 
bare parameters that were introduced in the original model [60].

8.3.3 �T he many faces of systems biology

Systems biology is a field of study that is broadly interested in understanding how the vast array of genomic 
and molecular components that make up living organisms are organized to produce the bewildering variety of 
phenotypic behaviors exhibited by those systems; in short, how genotype is mapped to phenotype. Perhaps not 
surprisingly for a field with such lofty goals, the manner in which different people seek to reach those goals vary 
considerably. For some, the ability to gather large amounts of data through the use of various high-throughput 
experimental techniques is the dominant theme, with the hope that insights can come from mining patterns 
in those data. Although in many cases, such analyses do little more than apply relatively simple statistical tech-
niques to identify or confirm interesting trends in the data without digging down into the mechanistic layers 
that are responsible for producing phenotype from genotype. For others, systems biology suggests the ability to 
move beyond molecular “parts lists” to construct cellular “wiring diagrams,” complex dynamical descriptions 
that can be investigated to characterize the emergent phenomena that drive living systems. Others motivated 
to understand such emergence, however, are deeply skeptical of such models, in large part because so many 
parameters are unknown: for them, characterizing the phenomenology of living systems is paramount, even if 
the resulting models might be more difficult to link directly to the sorts of data generated by high-throughput 
assays and the sorts of microscopic manipulations that are in the molecular biologist’s toolbox. Still others aim 
to develop mechanistic models within other mathematical frameworks that do not rely on the proliferation of 
unknown parameters characteristic of chemical kinetic networks. These include Boolean models that discretize 
state spaces and transition rules [61], and in the arena of metabolic modeling, constraint-based models that 
compute flux distributions consistent with a set of stoichiometric and flux-bound constraints [62].

Model parameterization and parameter estimation are on the front lines of these sorts of debates. Complex 
wiring diagrams are easy to construct yet difficult to parameterize. For some, a model with nonidentifiable 
parameters is a nonstarter, although as noted above, it is still possible to have predictive models with poorly 
characterized parameters. Rather than simply rejecting overly complicated models in favor of parsimonious 
phenomenological models, insights into sloppiness in complex biological systems allow us to migrate along 
this spectrum, identifying model structures with lower effective dimensionality that can help point the way 
toward phenomenological models. Model reduction procedures that retain the full underlying parameter 
space in effective parameters allow bridges to be built between mechanism and phenomenology [60].

In addition, top-down statistical inference from large data sets can potentially make use of machine learning 
techniques focused on dimensionality reduction: Big Data are not always as big as they seem, but often reside on 
lower-dimensional subspaces. Developing better methods for incorporating prior information about mechanistic 
processes into statistical inferences from system-wide datasets remains a big challenge for the field, but perhaps 
bridges could be built from mechanism to inference by integrating our insights about low-dimensional subspaces 
in mechanistic models with discovery of reduced-dimensional statistical descriptions of large datasets.

As prosaic as the parameter estimation process is, it sits in many ways on a knife edge that cuts across 
many important themes in the modern world of quantitative biology. Appreciating both the mechanics of 
parameter estimation and its place in the larger realm of modeling, experimental design, and interpretation 
of data are keys to making further progress in this area.
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ENDNOTES

1. Erythropoietin is also known as Epo, probably best known to the world through its surreptitious abuse by 
the cyclist Lance Armstrong and others interested in enhancing aerobic performance.

2. In some cases, however, one can relate parametric variation to global environmental parameters, such as 
temperature. In [26], we modeled temperature compensation in bacterial circadian oscillation networks, 
modulating chemical activation barriers exponentially with temperature according to the Arrhenius 
activation law. Even though the model was manifestly dependent on temperature, there exist extended 
regions of parameter space where the system dynamics is effectively independent of temperature, result-
ing in a circadian clock unaffected by temperature variation.
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Spatial kinetics in immunological modeling

DANIEL COOMBS AND BYRON GOLDSTEIN

9.1 � INTRODUCTION

Many situations in immunology require us to solve problems involving spatiotemporal dynamics. For exam-
ple, T cells of the immune system are mobile within a lymph node, where they must make direct contact 
with an antigen-presenting cell (APC) in order to detect an antigenic stimulus. Alternatively, we might wish 
to study the rate of binding of T cell receptors (TCR) to sparse peptide-major-histocompatibility-complexes 
(pMHC) on the APC surface. Or perhaps we want to know the rate of delivery of a secreted cytokine travelling 
from one cell to another across the immunological synapse. These three examples (illustrated in Figure 9.1) 
represent fundamentally important processes in the immune response but also show some essential aspects 
of spatial dynamic problems that we will examine in detail in this chapter:

	 1.	 Dimensionality. How many spatial dimensions must we consider? T cells move around in a three-
dimensional lymph node. However, TCR are restricted to the cell membrane—essentially a two-dimensional 
domain. Cytokine molecules diffusing in the immunological synapse represent an interesting case: they 
inhabit a three-dimensional volume, but it is extremely narrow in one direction and so we might want 
to simplify and model the situation in two dimensions only.

	 2.	 Scales of random motion. For molecular-scale objects such as TCRs or cytokines, we have reasonably 
good evidence that their motion obeys the law of chemical diffusion, also known as Brownian motion 
or thermal motion. For larger objects such as cells, which actively control their mobility, it might 
initially seem that we should develop rather complicated models to describe their motion. However, 
for some particular questions—such as how long a T cell might take to find a particular APC within a 
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lymph node—we actually find that a diffusive model of motion is an extremely useful tool. Of course for 
some questions, using a detailed and complicated model is inescapable!

	 3.	 How many mobile objects are there? It could be that only one T cell in the lymph node has receptors that 
will recognize a particular antigen, itself present on a single APC. In this case, we might want to ask 
with what probability will the T cell find the APC? (and if so, how long might that take?) On the other 
hand, a single T cell can have 50,000 or more identical TCR on its cell surface, each of which can bind to 
pMHC that can also be present at fairly high densities. Because of this high density we might prefer to 
work with the local surface density of TCR rather than trying to model individual receptors.

In this chapter, we will begin by describing chemical diffusion, and why it can be a useful approxima-
tion for objects that are not undergoing true Brownian motion (such as mobile T cells). We will then outline 
how diffusion-based modeling can be applied to model particular scenarios arising in cell- and tissue-scale 
immunology.

9.2 � BROWNIAN MOTION AND DIFFUSION

Consider a tiny particle such as a biomolecule in solution. The solvent molecules surrounding it are in con-
stant thermal motion and so the particle is continuously jostled about. Brown observed this in 1827 while 
looking at organelles ejected from pollen grains under a microscope. This observation remained mysterious 
until Einstein published a physical explanation of Brownian motion in 1905 as one of the Annus Mirabilis 
papers (this historical statement may only be approximately true). We will not go through the derivation of 
all the properties of Brownian motion or diffusion—there are many books and review papers on that topic for 
the interested reader. A great starting point for reading about diffusive models is Berg’s book (Berg, Random 
Walks in Biology, 1993). However, here are the essential facts that you should know.

	 1.	 The theory of diffusion can be formally derived from consideration of a particle undergoing infinitesimal 
accelerations (due to bumps by solvent molecules) occurring infinitely often. Does that make sense? Why 
does the particle move at all, since the accelerations are infinitesimal? On the other hand, why does it 
not accelerate to an infinite velocity, since it is bumped at an infinite rate? In the mathematical deri-
vation, we must be careful to avoid both these problems and this is done through a delicate process. 
Suppose that the change in position of the particle during a small time dt is dx. When we take the limit 
dt → 0 (as in the derivation of the derivative from calculus), we must simultaneously enforce that dx2/dt 
approaches a finite constant, or equivalently, that the jumps in space are proportional to the square root 
of the time step, provided that the time step is sufficiently small.

	 2.	 The assumptions needed for the mathematical theory are physically reasonable. The main assumptions 
we need are that the particle is bombarded by solvent molecules at a very high rate, and that the bom-
bardment is spatially uniform—that is, it comes from all directions uniformly. These assumptions are 
certainly good approximations for a study of particles in water at room temperature, provided the time 
scales we are considering are not ridiculously small.

	 3.	 There is only ONE parameter governing the particle motion. We call this parameter the diffusion coef-
ficient D and it can be estimated using the famous Einstein relation (Einstein, 1956):

	 D k TB= /ζ

		  Here, T is the temperature and kB is the Boltzmann constant. Together, kBT describes the energy avail-
able for moving the particle due to thermal motion of the solvent. ζ is the drag coefficient due to friction 
of the particle, describing resistance to motion. When we calculate the dimension of D, it turns out to 
have units of length2 per time (so it is measured in m2/s or more commonly in cell biology, μm2/s). The 
Einstein relation also tells us that the diffusion coefficient should scale linearly with temperature. The 
Stokes drag law of fluid mechanics predicts that the drag coefficient ζ is proportional to the particle size. 
So we predict that larger particles should diffuse more slowly.
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	 4.	 The mean-square displacement of the particle is proportional to time. This means that if we perform 
many experiments where the particle is free to move from a starting position for some time t, the mean 
of the square of the total displacement over that time <dx2> = 2 n D t where n is the dimension we are 
working in. For instance a particle moving in a membrane is effectively in dimension n = 2, while a 
particle diffusing in solution is in dimension n = 3. Notice also that the diffusion coefficient D shows up 
here as a constant of proportionality. Equivalently, as we shall see below, the standard deviation of the 
particle position is proportional to the square root of time.

	 5.	 The probability distribution of particle displacement after a fixed time t is a Normal (aka Gaussian) distribu-
tion with mean zero and variance 2 n D t. This probability distribution can be expressed as the function 
plotted in Figure 9.2.
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In these points, we have emphasized the random behavior of a single particle and in particular, we have 
the probability distribution function for changes in the particle position as we step forward in time. By sam-
pling from this distribution, one can generate simulated particle trajectories (Figure 9.2).

Now let’s consider situations where there are lots of particles, so it makes sense to build our model 
around the particle density. Temporarily focusing on the one-dimensional case, we imagine that every par-
ticle is equally likely to move left or right, so the net flow of particles will be down concentration gradients. 

PDF
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Figure 9.2  Gaussian probability distributions of steps in Brownian motion. (a) During a time Δt, a particle 
undergoing one-dimensional Brownian motion takes a step sampled from a Gaussian distribution with mean 
zero and standard deviation 2Δt. (b) In two dimensions, movement steps are sampled from a two-dimensional 
Gaussian function. (c) 20 simulated two-dimensional tracks, all starting at the origin, are plotted.



9.2  Brownian motion and diffusion  143

This simple concept is called Fick’s law, and it can (in one dimension) be written as an equation for the flux J 
in terms of the density profile u(x, t):

	
J x t D u

x
( , ) .= − ∂

∂

The interpretation of D at this point is as a simple proportionality constant, but we shall see below that it 
is indeed the diffusion coefficient defined above. Now we can use the transport law ∂u/∂t = −J(x, t) to find the 
famous diffusion equation

	

∂
∂

= ∂
∂

u
t

D u
x

2

2 .

In two or three dimensions, this equation becomes

	

∂
∂

= ∂
∂

+ ∂
∂







u
t

D u
x

u
y

2

2

2

2 or

	

∂
∂

= ∂
∂

+ ∂
∂

+ ∂
∂







u
t

D u
x

u
y

u
z

2

2

2

2

2

2 respectively.

We can also write the equation in cylindrical coordinates (r, θ, z) or spherical coordinates (r, θ, ϕ):
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Suppose that we have N particles all at position x = 0 at time t = 0. This is represented by the density func-
tion u(x) = N δ(x) where δ(x) is a Dirac delta function based at x = 0. What will the density function look like 
at some later time t? Intuitively, we know that the density must become more spread out as particles diffuse 
away from the origin. We can also imagine that the shape of the function will be symmetric, but with a peak at 
the origin. Alternatively, we can consider each particle forming the density individually. We know from above 
that the probability density function for the position of every particle at a later time is a Gaussian function, 
and since the particles are identical and move independently, the N particle distribution function must also 
be a Gaussian (written here for n = 1 dimension):

	
u x t N

Dt
e x Dt( , ) /( )= −

4

2 4

π

This is exactly the solution to the diffusion equation, and can be checked by taking the partial derivatives. 
The higher dimensional analogues work too.

An important observation here is that the probability distribution of position for N identical independent 
Brownian particles can be calculated by solving a corresponding diffusion equation. This interpretation also 
allows us to find the probability distribution function for a particle constrained by a boundary (in the above 
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description, the particles was implicitly completely unconstrained). The most common forms of the bound-
ary conditions, expressed here as a boundary at x = L in a one dimensional form, are:

	 1.	 u(L) = 0. (Dirichlet or absorbing boundary, any particle that reaches x = L is permanently removed from 
the system)

	 2.	 ∂u/∂x (L) = 0. (Neumann or reflecting boundary, particles may not cross x = L)
	 3.	 u(L) + k ∂u/∂x (L) = 0. (Robin or partially absorbing boundary. The density flux into the boundary is 

proportional to the density at the boundary)

Analogues of these conditions for two- and three-dimensional problems can be applied by replacing the 
derivative term ∂u/∂x with the directional derivative taken at the boundary in question.

9.3 � IS BROWNIAN MOTION/DIFFUSION ALWAYS THE RIGHT 
MODEL TO APPLY?

The diffusion model is relatively simple and stands on a solid physical footing. It is quick and easy to param-
eterize (there is only a single parameter!) and has been applied to model an enormous array of scientific situ-
ations. However, there are situations in which we should use a different model of particle mobility, even when 
we believe the motion is random or has a random component.

An important thing to remember is that the derivation of the diffusion equation requires that the motion 
be structured in the same way over all time and length scales. If the motion of the particle deviates from this 
universal behavior, we should think about whether pure diffusion is an appropriate model. Often, one can 
still use a relatively simple diffusion model but at least with an understanding of the limits of validity of the 
approximation. We now present some illustrative examples from immunological problems to hopefully make 
this point more clear.

	 1.	 Immune cell surface receptor mobility. Surface receptors on immune cells, include the fundamental units 
of the adaptive response: T cell receptors and B cell receptor. These are known to be mobile on the cell 
surface. Understanding their motion (and how this relates to cell signaling and activation) is a very 
active part of cellular immunology research. Since receptors are known to encounter barriers to motion 
on the cell surface, their motion is certainly not diffusive. However, the diffusion model is often applied 
to cell surface data. How is this justifiable? The answer is that it depends on the downstream applica-
tion. Over long time-scales (exceeding a few seconds), receptor motion seems to be approximately 
diffusive, and in any case this model reduces the number of parameters that must be fit. For these 
reasons, models of receptor dynamics at the immunological synapse usually take the receptor motion as 
diffusive.

	 2.	 Secreted molecules within the immunological synapse. When molecules (for example cytokines) are 
released into the volume of an immunological synapse between two cells (such as a T cell and an 
antigen-presenting cell), they would be expected to diffuse freely in the volume. However, recent work 
has suggested that the dense assembly of adhesion molecules and other cell-surface receptors present in 
the synapse significantly hinders their diffusive motion (Woodsworth, Dunsing, & Coombs, 2015). The 
simplest way to handle hindered diffusion is to reduce the diffusion coefficient by a factor reflecting the 
loss of available volume for diffusion.

	 3.	 T cell motion within a lymph node. Cells are much larger than the diffusing molecules described so far, 
and their motion due to thermal noise would be extremely slow. So we cannot justify applying a diffu-
sion model from pure physics. However, it has been experimentally established via two-photon micros-
copy that T cell motion is not purely diffusive. Rather, they exhibit short-term persistence of motion and 
this is probably due to the fact that they preferentially attach to, and move on, an array of filamentous 
cell structures within the lymph node (Bajenoff, Glaichenhaus, & Germain, 2008). Nonetheless, the 
motion of motile T cells within the lymph node has been established to be consistent with underlying 
random walk behavior when reasonably long time scales (greater than a few minutes) are considered 
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(Cahalan, Parker, Wei, & Miller, 2003; Meyer-Hermann & Maini, 2005). Indeed, a network-based model 
of T cell motion can be reduced to Brownian motion over medium- to long-time scales (Donovan & 
Lythe, 2012). For long-time situations, a pure diffusion model has many benefits: it is simple and well 
defined, and requires only one parameter estimate. However, the diffusive model of T cell motion 
should always be regarded as a convenient large-scale approximation, which loses validity if we ask 
questions at the scale of a single cell.

9.4 � HOW CAN WE ESTIMATE THE DIFFUSION COEFFICIENT?

As described above, the Einstein relation is the official starting point for estimating D. In particular, when we 
consider three dimensional diffusion, there is a simple formula for the drag coefficient of a spherical particle 
of radius a:

	
D k T

a
B=

6π µ

Working in MKS units at 20°C, the Boltzmann factor kBT = 4 × 10−21 J and the dynamic viscosity of water 
is μ = 10−3 kg m−1 s−1. Therefore, a spherical particle of radius 2nm (roughly a small protein) would have D = 
7 × 10−11 m2s−1 or perhaps more usefully we can express this as D = 700 μm2s−1. Recall from above that we 
can estimate the root mean square average of the distance travelled by this protein as L n D t         = 2 . Here, 
the dimension n = 3 and if we set t = 1s we find L = 20 μm, which is a little more than the typical diameter 
of a lymphocyte (10 μm). This typical displacement shows that unimpeded proteins are expected to rapidly 
propagate across cells or within tissues.

For particles diffusing in three dimensions, the Einstein relation gives a reasonable starting estimate. 
Comparing to experimental data it is usually found to be a little too fast. This may be because proteins carry 
with them a shell of water molecules that effectively increases the radius and therefore their susceptibility to 
hydrodynamic drag.

In two dimensions, such as when we are estimating the diffusion coefficient of a cell surface-bound recep-
tor, the Stokes Einstein relation still applies, but the calculation of the relevant drag coefficient becomes 
challenging. Saffman and Delbruck presented the relevant theory in 1975 where they derived the following 
equation for the frictional drag on a membrane-embedded protein, valid when the drag force is primarily due 
to membrane viscosity:
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where η is the membrane viscosity, h is the membrane thickness, η′ is the viscosity of the solvent external 
to the membrane, and γ is a numerical constant approximately equal to 0.577 (Saffman & Delbruck, 1972).

A key parameter in the Saffman-Delbruck equation is the effective viscosity of the cell membrane, which 
can change rapidly over only a small temperature range. For this reason, it is preferable to obtain the diffusion 
coefficient for a receptor of interest directly from experiments conducted at 37°C. Experimental techniques 
for experimental determination of membrane protein diffusion coefficients include Fluorescence Recovery 
After Photobleaching (FRAP), Fluorescence Correlation Spectroscopy (FCS), and Single Particle Tracking 
(SPT). The details of estimation in each case involve fitting the data to a model of pure diffusion (Coombs, 
Das, & Morrison, 2011; Phillips, 2012).

In most cases, typical diffusion coefficients for membrane proteins are around .02−0.1 μm2 s−1. For a typi-
cal protein, this value is approximately 104 times slower than for diffusion in three dimensions, reflecting the 
strong viscous drag arising from the cell’s lipid membrane.
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9.4.1 �E ffective diffusion coefficients

As discussed above, sometimes we would like to apply the simple diffusion model to the motion of cells over 
sufficiently long time- and space-scales, or even to model the motion of larger objects. For example, the dif-
fusion model is often used in ecology to describe the random motion of animals or seed dispersal from trees. 
In this case, we cannot appeal to the Einstein relation and must instead allow experiments to guide us. A 
reasonable approach is to estimate the mean-square displacement from experimental data and then set this 
value equal to 2 n D t where n is the dimension. Typical estimates for motile lymphocytes in a lymph node are 
in the vicinity of 60 μm2 min−1 (Donovan & Lythe, 2012).

9.5 � DIFFUSIVE TRANSPORT AND DIFFUSION-LIMITED BINDING

We are now ready to investigate the impact of diffusive transport on kinetics. Let’s consider a fundamental 
question in immunology related to the rate of arrival of T cells to antigen-presenting cells (APCs) in a lymph 
node. One approach to this problem would be to set up an array of APCs in a three dimensional domain, 
and then solve a diffusion problem where T cells diffuse around at a given rate D until they hit an APC (an 
absorbing boundary). This approach would lead to a numerical solution of a partial differential equation. We 
will instead consider an approximation to this full problem that nonetheless gives us a lot of insight into the 
problem (Lauffenburger & Linderman, 1996).

Let’s define T to be the density of free T cells in the lymph node, and A to be the fixed density of APCs. 
Since we are only modeling the rate of arrival of T cells at APCs (for now), we can suppose that the number 
of APCs is constant. Then a simple model for the generation of T cell – APC pairs (defined as P(t)) could be 
written as the differential equations
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We have replaced the whole spatial problem with a much simpler ODE, and importantly, all the compli-
cated dynamics of T cell motion that would be explicitly captured in a PDE formulation have been replaced by 
a single rate constant k+. We call this the diffusion-limited forward rate constant, and it has units of μm3 s−1. 
The way to calculate k+ in this context is to calculate the flux of T cells into a single APC, and then divide this 
by the concentration of T cells (T). The trick that makes this possible is to calculate the flux assuming that 
the system is at equilibrium, where new free T cells are being created at a rate that balances the loss of free 
T cells as they bind to APCs. There may be more than one way to establish this equilibrium—and the answer 
that you find may depend on how you set up the equilibrium! This is the price that sometimes has to be paid 
in order to build a simple theory. If you need a more precise answer to a problem, you may need to attack it 
in a more laborious way.

Let’s start by modeling a single APC as a perfectly absorbing sphere of radius a in an otherwise empty 
(and infinite) volume. After this calculation, we will develop corrections to account for the presence of other 
APC. Since there is only one sphere, we can work in radially symmetric spherical coordinates centered on 
that sphere and the diffusion equation for the spatial concentration of T cells, T(r,t) becomes
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We need to calculate a steady state flux, so we set dT/dt = 0 and integrate twice to obtain

	
T r A A

r
( ) .= +1

2

To find A1 and A2 we apply the boundary conditions T(r = a) = 0 (meaning that the APC is perfectly 
absorbing) and T(r → ∞) = T0 (meaning that the concentration of T cells far from the trap remains at a con-
stant background concentration). This gives us the steady state solution
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from which we can calculate the total flux into the sphere
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and therefore (for this one-APC problem), we have found

	 k Da+ = 4π .

This is the flux per T cell into a single immobile APC of radius a. We could also derive the same result 
by imposing a fixed flux of T cells into the “lymph node” at infinity. This would lead to a steady state where 
the flux of T cells meeting the APC would be the same as the flux of T cells into the lymph node, and the 
background concentration of T cells would be proportional to the flux. This problem should be attempted as 
an exercise!

This result was originally derived by Smoluchowski and is referred to as the “dilute limit”—meaning that 
the targets (APCs in our context) are infinitely far apart (von Smoluchowski, 1916). We will now derive a cor-
rection when there is a nonzero density of APCs for the T cells to bind to. We focus attention on a single APC 
of radius a as before, but we treat the effect of all the other APCs by smearing them out over all space, i.e., 
we treat them as a uniform field of competing APCs. This is called a mean field approximation. To achieve a 
steady state situation, we create T cells uniformly in space at a rate S. Our steady state diffusion equation now 
becomes
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In this equation, A is the background density of APC. These are treated no differently than the focal 
APC — T cells arrive at them at the same rate k+. We solve this equation by successively rearranging and 
integrating. After applying the boundary condition that T(r = a) = 0 and requiring that T remains finite as 
r → ∞, we find the solution

	
T S

k A
a
r

e r a= −




+

− −1 ( )/ .λ



148  Spatial kinetics in immunological modeling

Here, λ    =
+

D
k A

 is a characteristic length corresponding to the distance a T cell typically travels before it 

reaches an APC. The concentration far from the focal APC is T S
k A0    =

+
 and so it follows that
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Let’s use this to look at a particular biological situation now. Suppose a lymph node is a sphere of radius 
L = 1mm and contains 100 APC bearing a particular pathogenic antigen. This corresponds to an APC density 
of about 2.4 × 10−8 cells per μm3. We know that APC typically have a dendritic shape that is not close to a 
sphere, so we must assign an effective radius to each. Suppose this is a = 20 μm. Now suppose there are 103 
T cells within the lymph node that have the ability to recognize the particular antigen, and suppose their 
effective diffusion coefficient is D = 10 μm2/min. Plugging the numbers in and solving a quadratic equation, 
we obtain k+ = 2.6 × 103 μm3/min and λ = 400 μm. To convert k+ to a rate of T cell – APC encounters, we must 
multiply by (AT) and the volume of the lymph node:

	
Rate of encounters = =+k TA L4

3
0 0633π . / min.

So according to our model, we might expect it to take on the order of (1/0.063) = 16 min for one T cell 
out of 1000 to find any of 100 APC, within a single lymph node. This would be an important parameter 
to know in developing a model of an initial immune response. We also found an estimate of the typical 
distance a cell must travel before an encounter, λ = 400 μm. This is a substantial fraction of the radius of a 
lymph node.

To find these results from the model, we had to make a number of assumptions. We replaced the den-
dritic structure of the APC with a sphere. We ignored the potential crowding effect, where a T cell might 
have difficulty reaching an APC due to other T cells already being bound to it. We did not consider the 
possible effects of local cytokine signaling by APCs to attract T cells. We also ignored the known struc-
tural network of reticular cells that pervade the lymphoid tissue, and along which T cells are known to 
preferentially migrate. However, the calculation was quick and simple and gave us a reasonable answer. In 
summary, this example nicely illustrates the power of diffusion-limited reaction rates as a tool for solving 
spatial problems.

9.6 � EFFECTIVE RATE CONSTANT MODELING OF TRANSPORT 
ACROSS THE IMMUNOLOGICAL SYNAPSE

When lymphocytes meet antigen-presenting cells, they form a region of tight contact called the immuno-
logical synapse. Among its many important functions, this allows for the directed secretion of signaling 
molecules from one cell to another. Molecules are released from one cell and diffuse across the short distance 
to the second cell, where they may bind to receptors and potentially be internalized. The two cells are held 
together by adhesion molecules of a given length. We can ask, what is the effect on the efficiency of delivery 
of signaling molecules of the length of the adhesion molecules? One way to assess this is to examine the flux 
of molecules hitting the target cell, as well as the diffusion limited rate constant for binding. See Coombs and 
Goldstein, 2005 for more discussion and details about these calculations.

We set up our mathematical model as follows. Let the immunological synapse region be a wide, short 
cylinder of radius a and height d. Suppose that signaling molecules are released from the cell at the base of the 
cylinder with a constant, spatially uniform rate of release S, and that these molecules diffuse with diffusion 
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coefficient D. To calculate the rate of arrival of molecules at the top of the cylinder (corresponding to the 
target cell in this scenario), we solve the steady state diffusion problem for u(r, z) assuming radial symmetry:
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The absorbing boundary condition at r = a indicates that particles reaching the outside edge of the synapse 
volume are lost.

To solve this equation requires the technique of separation of variables and involves a simple Bessel func-
tion series. The solution can also be found in (for instance) (Carslaw & Jaeger, 1959):
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where we must choose the eigenvalues αn as solutions to J0 (αn a) = 0. Therefore, the form of the solution 
matches the diffusion equation and the two absorbing boundary conditions. The coefficients A0 are chosen to 
satisfy the nonzero boundary condition –D du/dx(r,z = 0) = S, leading to the overall solution
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Finally, we can determine the net flux of molecules reaching the target cell by integrating over the whole 
top surface:
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The dimensionless function f1(d/a) encodes the fraction of secreted molecules that hit the target cell as a 
function of the aspect ratio of the cylindrical immunological synapse. Plotting this function shows that leak-
age of the molecules through the edges of the synapse is not a big effect for realistic synapses with diameters 
in the range of μm and heights in the range of tens of nm.

We can also calculate the average concentration of secreted molecules at the target cell, as a function of the 
secretion rate S and the synapse geometry. This calculation is performed by averaging u(d,r) over the target 
cell surface in the synapse, whereby we obtain
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By setting this concentration u  equal to the dissociation constant for the binding reaction between the 
signaling molecule and the target cell surface receptors, we can estimate the secretion rate S that will lead to 
substantial receptor occupancy.

Let’s now use this to look at the transmission of the cytokine IL-4 from T cells to B cells across the immu-
nological synapse. IL-4 binds to the surface receptor IL-4Rα on the B cell, leading to intracellular signaling. 
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We estimate D = 102 μm/s and use the measured dissociation constant for the molecular binding, KD = 100 pM 
(Wang, Shen, & Sebald, 1997). This molar quantity can be converted to 6 × 10−2 μm−3 for ease of use. Let’s 
define the height of the synapse to be d = 40 nm (the length of an adhesion molecule pair) and the radius to 
be a = 2μm, as observed in fluorescence microscopy experiments. Inserting these specific numbers into the 
equation u KD= , we find that a total release rate of around six molecules per second is sufficient to occupy half 
of the IL-4Rα on the B cell, at steady state.

9.7 � COMBINING DIFFUSIVE TRANSPORT WITH CHEMICAL 
BINDING

So far, we have looked at problems where we are only interested in the rate of arrival of diffusing objects 
to a defined region. In the first example, the diffusing objects were T cells, and we were interested in the 
rate of arrival at an antigen-presenting cell within a lymph node. In the second example, the diffusing 
objects were cytokines diffusing from one cell to another in the immunological synapse, and we wanted 
to know what release rate would be able to saturate a cytokine receptor on the target cell. In both cases, 
we did not explicitly consider binding and unbinding of the diffusing object once it had reached its target. 
To allow for this to happen (and thus study diffusion-limited kinetics), we can extend the theory in the 
following way. We will first explain the theory in the context of a soluble ligand diffusing to and bind-
ing with a spherical cell and then consider the geometry of the immunological synapse as in the second 
example just above.

Consider a cytokine diffusing in three dimensions that can bind to and unbind from a spherical cell. 
Suppose the cell has surface area A, decorated with a finite number of receptors for the cytokine, and suppose 
that the cytokine binds to these receptors monovalently. We will assume that the cytokine (concentration 
L0) is present in excess, so that its concentration far from the cell remains unchanged. Let the number of 
unbound receptors be AR, so the concentration of receptors is R. When the cytokine is present, we expect 
some of the receptors will become bound. Call that number AB so the concentration of bound receptors is B. 
Under the usual well-mixed chemical kinetics, we would expect the concentration of receptor-cytokine pairs 
to follow a rule of the type
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where kon and koff are the forward and reverse rate constants for the reaction respectively. If this reaction 
reaches equilibrium, we find that B = (kon/koff) RL, allowing us to interpret kon/koff as the affinity of the reaction 
(or equivalently, KD = koff/kon is the usual dissociation constant). However, in this situation neither species is 
well mixed. The receptors are confined to the cell surface, while the cytokine molecules will transiently be less 
abundant close to the cell, as they bind the receptor. Eventually we would expect the cytokines to be uniform 
in space, but in the spirit of the previous sections, we are aiming for an ordinary differential equation descrip-
tion of the binding dynamics rather than determining the dynamics of the cytokine density over space. For 
that we would need to resort to numerical solution of a partial differential equation with a reactive boundary 
at the cell surface.

In order for binding to occur, the cytokines must approach the cell very closely and the rate of this 
approach is governed by diffusion. In the previous sections, we saw how to calculate the rate of approach, 
k+ = 4πDa where a is the radius of the cell and D is the diffusion coefficient of the cytokine molecules. We 
would therefore like to write an equation for the concentration of cytokines that are sufficiently close to the 
cell that they can bind available receptors in a form like:
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Here L is the concentration of free cytokines in the region close to the cell. Free cytokines enter this 
region either by diffusion-limited arrival from outside (rate k+) or by unbinding from a receptor (rate koff). 
Free cytokines may be lost from the region due to binding (rate kon) or by diffusing away. The new parameter 
k− governs the rate at which cytokines exit the region. To calculate k− requires a brief calculation in the spirit 
of the calculation of k+. We are interested in the rate at which unbound particles move away from the cell. 
Therefore, set up a steady state where there is a fixed concentration of particles S at the cell surface, and a con-
centration of zero far away from the spherical cell. Mathematically, this is encoded in the following boundary 
value problem in spherical coordinates:
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The solution is found as L(r) = L0 a/r. The diffusion-limited reverse rate constant k− is then the flux of mol-

ecules exiting the cell surface divided by the concentration of cytokine at the cell surface, k D L a
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Surprisingly, the diffusion limited forward and reverse rates are the same for this geometry. In fact this is 
quite often the case, but in the next section when we re-visit secretion and absorption at the immunological 
synapse, we will find that they are not the same.

The final step in the derivation of the diffusion-limited kinetics is to assume that the concentration of 
cytokines in the region close to the cell (L) reaches equilibrium rapidly. This allows us to write
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and finally, after inserting this expression into the basic chemical kinetics equation for B, we get
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where we have introduced the effective forward and reverse rate constants
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Here we have exploited the fact that k+ = k− in this problem to simplify the equations.
We can make several interesting observations at this point.

	 1.	 The equilibrium number of bound receptors is 
k
k

Lon

off
0, which is the same as when the system is well 

mixed and we do not worry about diffusive transport to the cell.
	 2.	 If diffusion is fast, k+ is big and the rate constants approach their well-mixed analogues. On the other 

hand if diffusion is very slow then the effective rate constants can be much smaller.

	 3.	 In the limit of high kon, the maximum possible forward rate is k
R

+  and we call the process diffusion-

limited. In the opposite case, when kon is small, the forward rate is approximately governed by kon alone 
and we call the process reaction-limited.

	 4.	 The diffusion-limitation for weakly binding reactions can be mitigated by increasing the number of 
surface receptors on the cell (high R). In order for the effective forward rate constant to be equal to 
half its maximum value, we require kon R = k+. For some “typical” parameters, D = 102 μm2/s, a = 5 μm, 
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and kon = 10−7 M−1s−1 = 1.66 × 10−2 μm3, it can be calculated that the total number of receptors achiev-
ing this kf is only 3800. As Berg and Purcell pointed out, it takes surprisingly few receptors distributed 
over the cell surface to raise the effective forward rate constant to half its maximal value (Berg & Purcell, 
Physics of chemoreception, 1977). There is plenty of room on the cell surface for many different popula-
tions of receptors to be displayed in sufficiently high numbers to capture their ligands effectively.

	 5.	 The difference between koff and kr is entirely due to dissociation and rapid re-binding of cytokines. In 
fact, the ratio kr/koff is equal to the probability that a dissociated cytokine escapes from the cell periph-
ery rather than rebinding to a receptor.

	 6.	 The given derivation is only valid in three dimensions. In two dimensions, it becomes much more dif-
ficult to set up the steady state, and beyond the scope of this chapter (Goldstein, Griego, & Wofsy, 1984; 
Lauffenburger & Linderman, 1996).

9.8 � DIFFUSION-LIMITED REACTIONS OF SECRETED MOLECULES 
IN THE IMMUNOLOGICAL SYNAPSE

Let us return to the example of IL-4 diffusion across the helper T cell – B cell immunological synapse. We will 
calculate k+ for this situation and use this to estimate the degree of competition among IL-4 receptors, as well 
as the degree to which diffusion might limit dissociation of IL-4 from its receptor. For the synapse geometry, 
k+ is obtained by setting up a steady state and calculating the mean flux into the target cell, assuming that it is 
perfectly absorbing. We have already solved for the concentration of IL-4 at steady state (equation 9.1 above) 
and calculated the flux of molecules into a perfectly absorbing target (equation 9.2). The diffusion-limited 
forward rate constant k+ is computed as the ratio of “flux” (equation 9.2) to the mean concentration at z = 0 
(equation 9.1) averaged over the contact area:

	

k a
aS d a

D
n

n

n
+

=

∞

∑ ( )











= flux /
tanh /

.
ˆ ( )
ˆπ
α

α
2

1
3

4

Using the same parameters as above, a = 2 μm, d = 40 nm, D = 102 μm2s−1, we find k+ ≈ 3 × 10−8 cm3s−1. 
From the definition of kf, we see that transport will have a big influence on the kinetics when konR/k+ > 1. Since 
we know kon and k+, we can calculate the relevant number of receptors that would have to be in the contact 
area: R ≈ 9 × 105 per contact area. The number of IL-4 receptors expressed on B cells has been found to be in 
the range of 50−5000 receptors on the whole cell, so we can see that transport by diffusion is rapid and the 
binding reaction occurs as if the system were well mixed. However, if the secretion of IL-4 is switched off and 
we look at dissociation, transport effects are rather important, as we will now discuss.

Consider the reverse reaction, where secretion of IL-4 by the T cell is turned off. IL-4 will begin to dissoci-
ate from its receptor and diffuse away. Because the volume in which this happens is so confining, a diffusing 
ligand that dissociates from a receptor will usually return to the B cell surface many times before it exits the 
synapse. The un-binding reaction is described by

	

dB
dt

k R L k Bf r= −  ,

and we expect that, over time, L will decay to zero as ligands escape. The effective rate constants have the same 
form as in the previous section, except that the diffusion-limited forward rate constant k+ must be replaced 
by the diffusion-limited rate constant for leaving the surface k−. The effective dissociation rate constant is
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where k− is the diffusion-limited rate constant for leaving the surface, averaged over the area of the target cell 
within the contact. The quantity R kon/k− controls the reduction in the off-rate constant due to rebinding (Berg 
& Purcell, Physics of chemoreception, 1977; Goldstein & Dembo, 1995). When R kon/k− ≥ 1, rebinding plays a 
significant role in slowing dissociation.

To calculate k−, we set up a steady state where there is a fixed f lux of molecules entering the cyl-
inder through its base (corresponding to the B cell), no molecules can enter the T cell (at z = d), and 
molecules  escaping the cylinder through its sides are lost. These boundary conditions are encoded 
mathematically as
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This is identical to the mathematical problem considered in the previous section, so we can see that the 
flux leaving the cylinder through its sides is just the total inward flux minus the flux computed in equation 
9.2. This quantity (πSa2 − flux) must then be divided by the averaged concentration at z = 0 (from equation 9.1 
above). Note that this reverse rate constant is certainly not the same as the forward rate constant k+. The full 
calculations for this case are given elsewhere (Coombs & Goldstein, 2005).

Using the parameters given above, we find that having 381 IL-4 receptors in the contact area is enough 
to achieve equality in this relation. Even though the numbers of IL-4 receptors are small on B cells, if they 
move to the contact region when a synapse is established, the half-life for dissociation of an IL-4 molecule 
from the contact volume will be significantly increased. Because of the confined geometry of the synapse, 
diffusion limitation during binding can be negligible but this may produce a significant effect during dis-
sociation. This reflects the fact that a large fraction of diffusive paths that start on one surface lead directly 
to the second surface without ever encountering the side of the cylinder whereas only a small fraction of 
paths that start on one surface and end by reaching the side of the cylinder do so without returning to the 
starting surface many times. Compounding this effect, in recent theoretical work it was proposed that 
diffusion in the synaptic volume is significantly hindered by the density of adhesion and other membrane 
proteins that are present (Woodsworth, Dunsing, & Coombs, 2015). This result serves to emphasize the 
importance of the immunological synapse in promoting efficient delivery of signaling proteins from one 
cell to another.

9.9 � THE MEAN FIRST PASSAGE TIME FOR DIFFUSIVE PROBLEMS

The diffusion-limited rate constants we have seen so far are based on differential equations and as such, carry 
an implicit assumption that the number of objects we are modeling is quite large. Under many circumstances 
in immunology, we might be interested in small numbers of particles or rare events. For example, a particular 
T cell might be stimulated only by a rare antigenic peptide presented at very low densities on a given antigen-
present cell. Experimental evidence indicates that extremely few (single digits) of these antigenic signatures 
can be sufficient for a measurable response in vitro. In this section we will briefly discuss an approach to 
calculating the probability distributions of times to events for diffusing particles and show how this can be 
related to the theory of diffusion-limited reactions as described above.

To motivate this approach, let’s look at the following simple case. Imagine a spherical lymph node of 
radius R, containing a single stationary antigen-presenting cell of interest. For simplicity, place this at the 
center of the lymph node, and suppose that it has radius a. Now, imagine a T cell located at an arbitrary posi-
tion (x, y, z) within the lymph node and suppose it is moving diffusively with diffusion coefficient D. We will 
try to calculate the mean (average) time it will take for the T cell to reach its target. To do this we also have to 
impose a boundary condition at the outer boundary of the lymph node. The simplest case is to suppose that 
the T cell motion will reflect at the boundary but we can consider other possible behaviors—such as a bound-
ary where the T cell exits the lymph node if it reaches the boundary.
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Working with the outer reflective boundary, let’s define T(x, y, z) as the mean first passage time for the 
T cell to reach the APC. This is the average over all possible diffusive paths from (x, y, z) to the sphere r = a. 
It can be shown (Karlin & Taylor, 1981; Goldstein, Griego, & Wofsy, 1984; Gardiner, 2009) that

	 D T x y z∆ ( , , ) .= −1

Here, Δ represents the Laplacian operator in the relevant coordinates (rectilinear, spherical, cylindrical, 
etc.) for the problem we are working on. This is a boundary value problem, so we must have enough boundary 
information. When the T cell is at r = a, it has already found the target, so we can set T(r = a) = 0. At the outer 
boundary, we already said that the particle will not exit. This corresponds to a no-flux boundary condition 
∂
∂
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T
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0. We can now solve the problem (using the spherical coordinate Laplacian) to obtain
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Dimensionless forms of these expressions are shown in Figure 9.3a. If we suppose that a T cell diffuses with 
an effective diffusion constant of 60 μm2min−1, then within a lymph node of radius 0.5mm and assuming an 
effective target radius of 20 μm, we find T ∼ 537  hours. This may seem high, but it is clearly an overestimate 
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Figure 9.3  Calculations related to the first passage time. (a) The dimensionless mean first passage time for 
a diffusing T cell (diffusion constant D) to reach a centrally located spherical target cell of radius 0.05R in a 
spherical lymph node of radius R is plotted against the dimensionless starting position r/R. In this case the 
outer boundary of the lymph node is reflecting. (b) The dimensionless variance of the first passage time is plot-
ted against starting position again with a reflecting outer boundary. (c) The probability of reaching the target 
cell is plotted against the starting position, in a situation where the outer boundary absorbs the searching cell. 
(d) The conditional dimensionless mean first passage time is plotted against the starting position. (a-d) In each 
panel, the dashed line indicates the spatial average over all possible starting positions of the T cell.
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for the time for a T cell response to begin to a particular pathogen for several reasons: (1) there will likely be 
more than one antigen-presenting cell in a given lymph node; (2) there may be more than one lymph node 
containing antigen; (3) there may be several potential reactive T cells available; and (4) the motion of the 
T cell may not be entirely random—it is believed that T cells preferentially track along a branched network 
of reticular cells, which may lead to a higher rate of encounters with antigen-presenting cells. See (Donovan 
& Lythe, 2012; Delgado, Ward, & Coombs, 2015) and references therein for more discussion of these issues.

It is also possible to calculate the higher moments of the escape time distribution by solving some slightly 
more complicated equations that form a recursion in the order of the moments. The general formula is that

	
D T i Tj j∆         ,= − −1

where Tj is the j’th moment of the exit time distribution (Karlin & Taylor, 1981). So for the spherical lymph 
node case that we are considering, we can compute the second moment via DΔT2 = −2T and thus the variance 
of the time distribution V(r) = T2 – T2. The details of this calculation are left as an exercise. Using the param-
eters given above, the averaged standard deviation is found to be σ ∼ 537 hours. We observe that the averaged 
standard deviation is very close to the mean and therefore the mean is not a great descriptor of the behavior 
of the time distribution, which is approximately exponential (Figure 9.3b).

Let us also consider the variation of this problem where the diffusing T cell will permanently leave the 
lymph node if it reaches the outer boundary before the antigen-presenting cell. We can now see that we must 
solve for the probability, P(x, y, z) that a cell initially located at (x, y, z) will diffuse to the central antigen-
presenting cell before it reaches the outer boundary. This probability is calculated by solving Laplace’s equation,

	 ∆P x y z( , , ) = 0

subject to the boundary conditions that P(r = a) = 1 (the T cell has reached the target cell) and P(r = R) = 0 (the 
T cell has exited the lymph node). The solution of this in our spherical geometry is easily found to be
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(Plotted in Figure 9.3c). We can apply this result to calculate the conditional first passage time for the T cell 
to reach the target cell. This is the average duration of all diffusive paths from the initial point to the target 
cell, conditioned on not hitting the outer boundary. This quantity, which we denote by TC, satisfies the fol-
lowing problem:
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This is solved in this geometry to give TC(r) = (r − a) (2R − r − a)/(6D). Again averaging over all possible 
starting and positions and using the parameter estimates from above, we find TC ≈ 9 5.  hours which is an 
order of magnitude below the averaged first passage time we found when the outer boundary was imperme-
able to the T cell (Figure 9.3d). The difference here is the conditioning: the vast majority of diffusing cells 
will exit the lymph node rather than reaching the central target! We can validate this by calculating the aver-

aged probability (over all starting positions) of ever reaching the target, P a a R
a aR R
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+ +
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parameters. When we condition on this highly unlikely event, only tracks that reach the central target are 
considered, and these usually reach the target rapidly.

Similar first passage time calculations can be made for more complicated geometries, partially absorbing 
boundaries, and multiple traps (Bressloff & Newby, 2013; Delgado, Ward, & Coombs, 2015). However, one 
should question the importance of calculations of the mean first passage time when the number of events 
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(e.g., arrivals) may be very small and poorly described by the mean. In these cases, it might be more worth-
while to study the full distribution of event times via partial differential equations, or to apply a spatial sto-
chastic simulation algorithm. In the latter case, the software Smoldyn is recommended as a relatively simple 
and robust application (Andrews, 2012).

9.10 � SUMMARY

In this chapter we have developed some basic ideas of diffusion and diffusion-limited reactions in immuno-
logical modeling. The methods and examples we have discussed are almost infinitely extensible to situations 
arising in immunology but in particular related to cell signaling and immune cell motion. Although it is 
often tempting to go directly to simulation, building an understanding of the space and time scales of the 
immunological situation via diffusion-limited reaction theory and first passage times almost always yields 
important insights into the problem and can be used to benchmark simulation approaches if and when those 
are eventually applied.
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Analysis and modeling of single cell data

DERYA ALTINTAN, JASCHA DIEMER, AND HEINZ KOEPPL

10.1 � INTRODUCTION

Understanding dynamic processes inside a single cell can be considered as the first step to understanding 
the dynamics of an entire multicellular organism. Even if cells are seemingly identical in the cell population 
of interest, their dynamical behaviors can be very different from each other. Ignoring this cellular hetero-
geneity leads to inaccurate models on the single cell level that in turn produce inappropriate descriptions 
of dynamics of the whole organism. Bulk measurements giving average information about the cell popula-
tion of interest may be insufficient to explain the dynamical behavior of a cell in the environment under 
consideration.

This chapter is devoted to giving an overview of single cell technologies, modeling of reaction systems, 
the contribution of extrinsic and intrinsic noises to the cellular heterogeneity, and inference methods that 
reconstruct the unknown states or parameters by using the given observed data.

Single cell technologies make it possible to categorize individual cells depending on their metabolomics, 
proteomic, and transcriptomic properties, which in turn will increase our capacity to understand the under-
lying dynamics of the immune system (Satija and Shalek, 2014), tumor cells (Navin et al., 2011), variability 
of stem-cells (Tang et al., 2010), and many other processes in prokaryotic and eukaryotic cells (Nachman 
et al., 2007). The criterium to conduct single cell experiments is detection of small amounts of molecules. 
The steadily increasing sensitivity of devices enables scientists to perform measurements with volumes in the 
dimensions of cells and below. But sensitivity alone is not enough. The cell consists of hundreds of thousands 
of different molecules, which make reliable molecular markers absolutely essential. For applications that rely 
on light detection, like microscopy and flow cytometry, fluorescent proteins and markers are widely used 
today to introduce selective visibility and high contrast.

Biochemical reactions in cells are stochastic processes. Single cell measurements reveal that isogenous 
cells, grown in the same environment, expose different dynamics, which is the result of stochasticity. 
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The variance of, for example, protein expression within a cell population is one of the most important exam-
ples of cell-to-cell variability (Altschuler and Wu, 2010). If we consider the expression of a particular gene, the 
abundance of the protein varies from cell to cell. Even in the same cell, the protein concentration may change 
when measured at different time points. The sources of this variability can be separated into two categories: 
intrinsic noise and extrinsic noise. In a few words, intrinsic noise refers to inherent randomness hidden in the 
particular cellular process, while extrinsic noise explains the effects of other cellular components on the reac-
tion system under consideration. All interactions between species in a single cell are described by biomolecu-
lar systems, defined as a combination of consumed and produced species. Depending on the representation of 
the abundance of species in a reaction system, different modeling strategies are developed, such as stochastic 
modeling or deterministic modeling.

Another problem in single cell analysis is to estimate the unknown or partially known quantities by using 
different types of the data obtained by single cell technologies. Bayesian inference can be used to construct 
posterior probability distributions and provide knowledge about the reaction inside of cells.

Models of single cell data are necessary to get information that would otherwise remain hidden from the 
eye of the experimentalist. Based on the nature of experiments and the methods used, some quantities cannot 
be read out directly or simultaneously by the operating device. Advances in computational methods have the 
power to complete and further predict data for experiments that are not executable today (Schoeberl et al., 
2014). Such approaches and studies are utterly relevant in drug treatment and therapy because diseases like 
cancer are highly diverse and the effects of a drug differ on each patient (Niepel et al., 2009, Niepel et al., 2014).

In Section 10.2, we give an overview about the most common technologies that derive data from single 
cells. Section 10.3 will explain how we can measure intrinsic and extrinsic noise based on dual color experi-
ments (Swain et al., 2002). Section 10.4 is devoted to introducing the basic concepts of these approaches. 
Section 10.5 explains the use of Bayesian inference. Finally, in Section 10.6, we explained how we can use the 
posterior probability distributions to identify the unknown quantities.

10.2  SINGLE CELL ANALYSIS

The tools to study differences on the single cell level have continuously improved their sensitivity and increased 
their throughput. A well-known single cell method is flow cytometry, which measures optical features of 
single cells, see Figure 10.1a. Cells in solution are directed in a steady stream to the detector. Since the stream 
is tapered, the cells pass the laser-based system for fluorescence and scatter values one after another. This 
technique is now divided into flow cytometers and fluorescence activated cell sorting (FACS) with the pres-
ence of a droplet generator (Fulwyler, 1965). To sort the cells, FACS uses electrical charge to manipulate the 
flight direction of the droplet. In comparison, a flow cytometer has no droplet generator and is therefore not 
capable of sorting cells. Although the single cell data from FACS experiments can be used to discover popula-
tion distributions, the method provides no further tracking of individual cells. It can be used to search for or 
to enrich rare cells types (Kling, 2015). While the time to measure one cell is on the order of microseconds, 
the throughput of this method is limited by the available optical markers to select for features. One attempt to 
bypass this limitation is to combine flow cytometry with mass spectrometry (so called mass cytometry). This 
can push the limit up to 50 different molecule markers in a single experiment for diverse cellular features in 
one experimental iteration (Ornatsky et al., 2010, Spitzer and Nolan, 2016). The most prominent targets for 
this method are metabolites and proteins (Xue et al., 2015). Mass cytometry is sensitive enough to detect the 
difference in concentration of small molecules between two single cells, which would have been hidden in the 
populations average (Heinemann and Zenobi, 2011, Onjiko et al., 2015). It is an important tool to investigate 
signaling pathways in cells, where proteins occur depending on the previous signal molecules and are often 
drug targets (Shi et al., 2012, Lun et al., 2017).

Another steadily advancing field is the area of DNA sequencing. Huge steps in quantity and quality have 
led to reduced prices, making it feasible to sequence the genome of a single cell (Kolodziejczyk et al., 2015). 
But, this has some drawbacks. As the sequencing methods rely on multiplying the sequence with PCR based 
techniques, errors and sequence bias can be introduced or amplified. Another drawback is the potential lack 
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of coverage of the DNA template. The nucleotide composition of a given gene has an influence on the quantity 
of replicates and can result in a loss of information (Nawy, 2013). However, genomes are not the only target 
for sequencing methods. Studies of the transcriptome are a powerful tool in the characterization of single 
cells (Pollen et al., 2014) and have the advantage that common transcripts are present at a higher copy number 
(approximately 50 molecules per cell) (Eberwine et al., 2013). This method is an important step to understand 
the dynamics of single cells (Figure 10.1b), especially for multicellular organisms. Improving bioinformatic 
methods and decreasing costs for a sequencing run are steadily reducing the limitation in this field.

The oldest and still one of the most powerful instruments to investigate a single cell is the microscope. 
Technical advances in physics and material science influence the resolution and sensitivity and help to bypass 
the diffraction limit of the microscope (Hess et al., 2006, Klar and Hell, 1999). Since the discovery of the green 
fluorescent protein, considerable effort has been put into the development of new techniques to tag and target 
all kinds of intracellular molecules. Now, it is possible to follow single molecules in the cell. One disadvantage 
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Figure 10.1  Examples of single cell technologies. (a) Simulated data for a flow cytometry experiment. Each cell 
was scanned for two optical features, i.e., fluorescence intensity of two different fluorophores. The axes of the 
scatter plot show the log of their respective intensities. The histograms for the two optical features on both 
time points give insights in the evolution of the cell population. Gating can be used with a FACS to gather cells 
with specified features and enrich for rare cell types. The data collected are distribution data. (b) Synthetic 
example for single cell mRNA sequence alignment of one gene. On a first analysis, conserved and uncon-
served regions can be distinguished. Depending on the function of the corresponding protein the conserved 
sequence may represent a catalytic domain. Besides the sequence, transcript sequencing is able to estimate 
the abundance of mRNAs in single cells. A heat map is often used to demonstrate the abundance of mRNA 
for a set of genes on the cellular level. Along each column a histogram gives insights into the distribution 
of mRNAs in a given population. Further bioinformatic analysis like correlation and clustering enable us to 
describe and reveal functions on the process of transcription. The data collected are distribution data.
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of the microscope is the throughput. In order to resolve single cells, the field of view is limited to a few hun-
dred micrometers. On the one hand, the recording of cells has to be automated in order to record hundreds or 
thousands of cells (Pepperkok and Ellenberg, 2006, Wong, 2006). On the other hand, the temporal resolution 
is limited to the time step that is needed to record an image at every position. Depending on the process that 
is studied, this can limit the number of cells that can be observed.

Recent developments have taken place in the design and fabrication of microfluidic devices for biological 
samples (Yin and Marshall, 2012). Droplet-based and continuous flow systems have both learned to deal with 
the demands of single cell measurements. The droplet-based approach can generate micro environments for sin-
gle cells, which enable high-throughput screening for protein engineering and for directed evolution (Agresti et 
al., 2010). Charged-based selection can be used to keep the most promising candidates with the desired feature. 
Oil-water emulsions, for example, provide good control over single droplets and generally exclude the cross-talk 
between cells in a suspension cell line (Hu et al., 2015). Continuous flow devices can be used to culture suspen-
sion cells as well as adherent cell lines. Depending on the organisms’ size and characteristics, different designs 
are required to keep track of cells over time. For example, steric traps can be used to capture and keep single 
yeast cells in a constant flow (Crane et al., 2014, Jo et al., 2015). The main advantage of microfluidic systems over 
flow cytometry and sequencing is the spatial resolution. Since most devices are monitored under a microscope, 
a time-lapsed image sequence of the single cells during the experiment can be easily recorded (Figure 10.1c).

All these technologies have enabled us to study the processes of life on the single cell level (de Vargas 
Roditi and Claassen, 2015). In all those experimental findings, noise plays a pivotal role. The following section 
will give an introduction into the mathematical description of this problem.

10.3 � CELL-TO-CELL VARIABILITY

Single cell measurements reveal that the dynamics of isogenic cells can be very different from each other even 
if they have a common ancestor and the environment they are growing in is exactly the same (Altschuler 
and Wu, 2010, Snijder and Pelkmans, 2011). This variability indicates that ensemble or bulk measurements 
may be insufficient to explain the dynamical behavior of an individual cell in the environment of interest. 
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Figure 10.1 (Continued)  Examples of single cell technologies. (c) Images from microfluidic experiments 
with yeast. PDMS structures are used to trap single yeast cells over time in one position and gene expres-
sion is induced by raising the concentration of sodium chloride in the medium. For each time point every 
cell is segmented and the intensity is calculated. The plot shows the mean intensity for each cell over 
90 min. The cell-to-cell variability can be calculated and noise can be estimated. The data collected are 
trajectory data.
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To determine the sources of this variability, one approach is to mathematically model this variability and to 
design dedicated experiments that can help to dissect different sources of variability.

As biomolecular measurements are always concerned with a specific cellular process (e.g., a particular 
signaling pathway), a cell population is said to exhibit variability if the measurement of this process is 
different across this population. Consequently, one can generally distinguish two sources that contrib-
ute to this variability. First, cells exhibit differences because the process of interest itself is random, for 
instance, due to the intrinsic randomness of biomoecular reactions. This source of variability is usually 
called intrinsic noise. Second, the measurement can differ across cells, because factors that are consid-
ered extrinsic to the process of interest vary across cells. This contribution, which is best defined by the 
variability that remains after removal of the intrinsic noise contribution, is usually called extrinsic noise 
(Bowsher and Swain, 2012, Swain et al., 2002). For instance, for a specific gene-expression system of 
interest, the global cellular level of ATPs or ribosomes may be considered extrinsic to the process of inter-
est. Nevertheless, differences in those levels across cells will also cause variability in the measurement 
of the gene expression system of interest. The differences in those extrinsic quantities may themselves 
arise due to randomness, for instance, in their synthesis process or through randomness in cell division, 
where daughter cells may inherit different amounts of those extrinsic factors. For processes compris-
ing biochemical reactions, such variability in extrinsic factors can often be approximately accounted for 
by introducing stochasticity in rate constants for the respective reactions. Whether such stochasticity 
involves temporal fluctuations or whether it suffices to introduce time-invariant heterogeneity for those 
quantities depends on the cellular process of interest and in particular on the relative time-scales of 
intrinsic and extrinsic processes.

To dissect intrinsic from extrinsic contributions to the measured variability, so-called dual color experi-
ments were proposed (Swain et al., 2002) that are reminiscent of classical twin studies (Bouchard et al., 1990). 
They are based on the following mathematical analysis. Let X be a stochastic process representing a particular 
cellular process of interest. Furthermore, let Z be a stochastic process describing all cellular processes that 
are considered extrinsic to the process of interest but that nevertheless influence it. See Figure 10.2a for the 
graphical representation of this abstraction.

Generally, we deal with a dynamic cellular environment, and the effect of the history of the extrinsic fac-
tors onto the process of interest needs to be accounted for. Throughout the chapter, Z  denotes the history 
of the extrinsic factors up to time t (Bowsher and Swain, 2012, Hilfinger and Paulsson, 2011). As an example, 
we consider a gene expression, where X(t) corresponds to the number of molecules of the expressed protein 
produced at time t.

As a normalized measure of variability of X we introduce the squared coefficient of variation (CV) µtot t2 ( ), 
at time t (Swain et al., 2002):

Z

XbXa

Z

X

(a) (b)

Figure 10.2  Separation of the cellular process of interest and modulating components that are extrinsic to 
the process. (a) The process of interest X modulated by its molecular environment Z. (b) Twin system compris-
ing identical copies Xa, Xb of the process of interest embedded in the same shared molecular environment Z.
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where [.], [.]  denote the mean and variance of X at time t, respectively. The law of total variance applied 
to X(t) for a given history of the dynamic environment Z  yields:
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Accordingly, substituting (10.2) into (10.1) allows us to separate the total normalized variation into two 
sources,
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Hence, the total variation is the result of both, the fluctuating extrinsic factors and the fluctuations that 
are intrinsic to the process of interest.

For the case of a time-invariant but random environment, representable by a random variable Z, the con-
ditioning on Z  in (10.2) naturally reduces to conditioning on Z. This corresponds to the variance decom-
position as originally proposed in (Swain et al., 2002).

Based on this decomposition, one may conceive experiments where the two components can be quantified 
separately. If we consider a cell population, the sample mean and the variance of X can easily be obtained, 
which in turn allows us to quantify µtot t2 ( ). To determine both sources to the total variation, we set up a 
twin experiment by ideally incorporating two identical copies of the process of interest (see Figure 10.2b). 
Naturally, if both copies should be accessible separately, they need to differ at least on their measured readout, 
i.e., in their reporter. Let us denote the abundance of the two reporters by Xa and Xb. We say that two reporters 
are conjugate if the following two conditions are satisfied: (i) Given the history of extrinsic noise, Z, 
Xa, and Xb are conditionally independent which implies   X t X t Z t Z X t Za b a b( ) ( )| ( )| ( ) ;    =    X |  

(ii)  X t Z X t Za b( )| ( )|   =   and  X t Z X t Za b( )| ( )|   =  . Here, the first condition implies that the 
fluctuations in the number of molecules Xa doesn’t have an effect on the number of molecules of Xb and vice versa.

In order to determine the two noise components in (10.3) we compute the covariance among the two 
conjugate reporters:
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To obtain the first equality, we used the law of total mean. The second equality holds due to condition 
(i) while the third and fourth equalities hold due to condition (ii). Since Xb is just a representation, for the sake 
of simplicity we used X instead of Xb in the last equality. This means that if we measure Cov (Xa(t), Xb(t)), we 
get an estimate of V E[ [ [( )| ]]X t Z  which is the numerator in µext t2 ( ). Since it is easy to determine its denomi-
nator, we can obtain an estimate of the relative extrinsic contribution µext t2 ( ). Consequently, if we measured 
µtot t2 ( ) and µext t2 ( ), then their difference gives an estimate for µint t2 ( ).
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Above, we obtained an estimate for µext t2 ( )  and used it to determine µint t2 ( ). The reverse can also be applied 
which means that we can determine µint t2 ( )  experimentally and then find the value of extrinsic contribution 
µext t2 ( ). To determine µint t2 ( ), we compute the mean squared difference of the two conjugate reporters:
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The first equality is just the result of the law of total mean. The second and the third equalities hold because 
of the conditions (ii) and (i), respectively. For the sake of simplicity, we write again X instead of Xa, Xb and 
get the fourth equality. As a result, we get an estimate of the numerator of µint t2 ( ), and we also know how to 
compute its denominator. Finally, we measure the µint t2 ( ). Then, subtracting the intrinsic contribution from 
the total noise yields an estimate for µext t2 ( ).

10.4 � MODELING INTRINSIC NOISE

In this section, we will discuss how the cellular process of interest, representable in terms of biochemical reac-
tions, can be modeled mathematically. A reaction in a reaction system is a composition of species interacting 
with each other. Depending on the abundance of the involved species, different mathematical models can be 
considered.

Let’s assume that the process of interest can be abstracted as a well-stirred reaction system involving N 
species, S1, S2,..., SN, interacting through M reaction channels, R1,R2,…,RM. The k–th reaction channel has the 
form

	 r S r S r S r S p S p S p Sk k k
N
k

N
c k k kk

1 1 2 2 3 3 1 1 2 2 3 3+ + + +  → + + ++ + p SN
k

N ,

where r pj
k

j
k, ∈  represent the reactant and product coefficients, respectively and ck is the real-valued sto-

chastic reaction rate constant. We specify the state vector of the system at time t ≥ 0 by X(t) = (X1 (t), X2(t),…, 
XN(t))T where Xj(t) is the integer abundance of species Sj at time t. One occurrence of the reaction Rk at time 
t updates the state vector to X(t–) + vk. where X(t–) is the state of the system before the jump and vk repre-
sents the stoichiometric vector (the state change vector) whose j-th component, νkj j

k
j
kp r= − , denotes the net 

change in the number of molecules of Sj. Let x N∈  be the given state of the system at time t, the probability 
of exactly one occurrence of the reaction Rk in the time interval [t,t + h) for sufficiently small h is given by ak.(x)
h where ak(x) denotes the propensity function. The mathematical form of this function can be motivated 
biophysically. The most elementary approach to this is based on the principle of mass-action, which asserts 
that the propensity of a reaction is proportional to the number of distinct reactant combinations available for 
execution of this reaction, i.e.:
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where the constant of proportionality is the reaction rate constant ck. Throughout the current section, we will 
exemplarily consider a model of the gene expression summarized in Table 10.1.
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The state vector of the gene expression model is defined by X(t) = (Geneon, Geneoff, mRNA, Protein)T. The 
value of a propensity function only depends on the current amounts of the reactant species. This is the main 
property of any Markov process, which is based on the idea that future of the system depends on only its 
current state; in other words, past behavior of the system has no role in predicting the time-evolution of the 
process. Since biochemical reactions are evolving in continuous-time and discrete state space, the resulting 
process is a continuous time Markov chains (CTMCs). It is not difficult to see that given initial copy numbers, 
X(0), the state vector of the process at time t is then determined as

	
X t X Y t vk k
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	 (10.5)

where Yk(t) denotes the number of occurrences of the reaction Rk up to time t. Using the fact that the reaction 
counting process in Equation (10.5) can be understood as a time-warped homogeneous Poisson process, the 
state of the reaction system can be described through the random time change model (RTCM) (Anderson 
and Kurtz, 2011):
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where ξk, k = 1,…, M, are now independent unit Poisson processes. Observe that X1(t) + X2(t) = X1(0) + X2(0) 
for our running example, which means that the total number of gene copies cannot change during time. This 
indicates that conservation relations play an important role in constructing the dynamics of a reaction system 
and can be used to reduce the dimensionality of the dynamics to some lower-dimensional linear manifold 
(Klipp et al., 2009).

Up to now, we focused on a discrete stochastic process where the amounts of species are considered as 
integers representing the copy numbers of molecules of the species. However, when the species have high copy 
numbers, it is permissible and more conducive to approximate the process in terms of real-valued concen-
trations. Accordingly, the process will now be considered as a continuous-time continuous-state stochastic 
process, i.e., a general diffusion process. For a given volume Ω of the reaction compartment, we define the 
concentration of the j–th species as Uj(t) = Ω–1Xj(t). In case of having unimolecular and bimolecular reactions 
of species with high copy numbers, we will say a X a U tk k( ( )) ( ( ))t = Ω , where ak is computed by using the cor-
responding deterministic reaction rate constant ck. Then, the system (10.6) can be rewritten as:
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Table 10.1  Reactions, propensity functions, and stoichiometric vectors for the gene 
expression model

Reaction

Propensity 

function

Stoichiometric 

vector

R1 : Gene Geneoff on
C1 → a1(x) = c1x2 v1 = (1, –1, 0, 0)T

R c
2

2: Gene Geneon off → a2(x) = c2x1 v2 = (–1, 1, 0, 0)T

R c
3

3: ( )Gene Gene mRNA transcriptionon on → + a3(x) = c3x1 v3 = (0, 0, 1, 0)T

R c
4 :mRNA mRNA Protein translation4 → + ( ) a4(x) = c4x3 v4 = (0, 0, 0, 1)T

R c
5

5: ( )mRNA mRNA degration → Ø a5(x) = c5x3 v5 = (0, 0, –1, 0)T

R c
6

6: ( )Protein Protein degration → Ø a6(x) = c6x4 v6 = (0, 0, 0, –1)T
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For large Ω values, ( ( ) )/ξk t tΩ Ω Ω−  converges in distribution to a standard Brownian motion Wk 

(Anderson and Kurtz, 2011), i.e., ( )ξk

d

kt t W t( ) / ( )Ω Ω Ω− → . Based on this fact the diffusion approximation 
of (10.7) can be written as:
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This means that the difference U(t) – U(0) is generated by a deterministic drift term and a stochastic dif-
fusion term represented by the first and the second term in (10.8), respectively. The solution of the integral 
equation (10.8) agrees in distribution with the solution of the following Ito stochastic differential equation 
(SDE), i.e., the chemical Langevin equation (CLE) (Gillespie, 2000):
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When the number of molecules of species, X, and the system volume both approach to infinity, but the 
concentration of species, U, remains constant, then the term with 1/ Ω  in Equation (10.9) becomes negli-
gible. As a result, in that “thermodynamic limit” case, the process can be described with a set of ordinary 
differential equations (ODEs) called reaction rate equations (RREs)
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which is the representation of the time evolution of concentrations of species when the system is modeled by 
the traditional deterministic approach (Wilkinson, 2006). The hierarchy of the discussed models can be seen 
in Figure 10.3.

Biochemical
reaction

network  

CME

RTCM

FPE

CLE

ODE

Figure 10.3  The hierarchy of the models. The stochastic approach to modeling biochemical reaction net-
works starts with a continuous time Markov chain. For the discrete state space of molecule counts X N∈ , 
the time evolution of the state is given by RTCM while the time evolution of the corresponding probability 
distribution is governed by the CME. In the case of a diffusion approximation, leading to continuous state 
space X N∈ , the time evolution of the state is given by the CLE and the time evolution of the corresponding 
probability density function is governed by the FPE. We consider that the reactions take place in a compart-
ment of volume Ω. Then, when X → ∞ and also Ω → ∞, but the concentration U = X/Ω remains constant all gov-
erning equations converge in this thermodynamic limit to the reaction rate ODE. It gives the time evolution of 
concentrations of species for infinite volumes. When all propensity functions of the reaction network are affine 
functions, the time evolution of the mean of X/Ω whose probability distribution satisfies either the CME or the 
FPE is given by the reaction rate ODE, for any Ω.
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Figure 10.4 depicts the abundances of Geneon, mRNA, Protein for our running example when the system 
is modeled by the RTCM given by Equation (10.6) (dotted line), the CLE given by Equation (10.9) (black line), 
and the ODE given by Equation (10.10) (dashed line).

It is apparent that the main difference between the CLE given by Equation (10.9) and the RRE given by 
Equation (10.10) is a term proportional to 1/ Ω . When the system satisfies the conditions of the thermody-
namic limit, this term goes to zero, then, the CLE turns to the corresponding RRE. If we assume that the solu-
tion of the CLE can be represented by a state vector that is the summation of the solution of the corresponding 
RRE and a stochastic term proportional to 1/ Ω , the time derivative of the stochastic term gives the linear 

noise approximation (LNA) (Kampen, 1981). Consider the solution of CLE in the form V t t t( ) Û( ) ( )= + 1
Ω

η , 

where ˆ( )U t  is the solution of RRE given by Equation (10.10) and η(t) represents the state vector of the stochas-
tic process whose time derivative satisfies the LNA. To obtain LNA, we use the first order Taylor expansion 
of each propensity function:
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Figure 10.4  Abundances of Geneon, mRNA, protein when the dynamics of the reaction system is modeled by 
RTCM given by Equation (10.6) (dotted line), CLE given by Equation (10.9) (black line), and ODE Equation (10.10) 
(dashed line). The initial value of the state vector is X(0) = (0, 1, 25, 100) and the parameter values c1 = 0.2 s–1, 
c2 = 0.2 s–1, c3 = 1 s–1, c4 = 4 s–1, c5 = 0.05 s–1 and c6 = 0.02 s–1. For the CLE model, we set Ω = 1.
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where f t a U
Ukn
k

n
U U t( )= ( ) | = ( )

∂
∂
�

� , k = 1,2,…, M, and n = 1, 2 , …, N. Substituting V(t) and Equation (10.11) into CLE 

given by Equation (10.9) and considering Ω is large enough such that we can neglect all terms proportional to 
the powers of 1/ Ω  gives us the following stochastic differential equation which is called LNA:
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If we have Gaussian initial conditions, the solution of this system is a random variable distributed 
according to a normal distribution with zero mean and covariance σij(t) satisfying the following differential 
equation:
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subject to the initial condition σij(0) = 0 for all i,j = 1, 2, …, N.
Until now, we described the dynamics of biochemical reactions by using their state vector representations, 

but another way of analyzing these systems is to obtain a time evolution equation for the probability mass 
function of X(t) given by

	
 X t h x v X t x a x h o hk k( ) ( ) ( ) ( ),+ = + =  = +

where some correction term f(h) is said to be in o(h) if lim ( )
h

f h
h→

=
0

0. Based on the definition of ak(x), we can 
write  X t h x( )+ =( )  as follows:
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The first term on the right hand-side of Equation (10.12) represents the situation that the system is in state 
x at time t, and no reaction will fire in [t, t + h). The second term expresses the route that the system is in state 
x–vk at time t, and there will be only one occurrence of the reaction Rk. Dividing both sides by h and taking 
the limit h → 0 results in the famous chemical master equation (CME) (Gillespie, 1992):

	

d X t x
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which is the time derivative of the probability function of the path wise representation of X given in (10.6). 
Although it is possible to obtain analytical solutions of the CME for monomolecular reactions (Jahnke and 
Huisinga, 2007), when the system consists of multiple reaction channels and multiple species, it will be a diffi-
cult task to solve it analytically. Therefore, moment based methods that approximate the solution of the CME 
by using its moments have been proposed. We refer to (Andreychenko et al., 2015) and the references therein 
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for more details about the moment based methods. Let g: ℕN →ℝN be any function, then, the time evolution 
of the mean of g(X(t)),  g X t( ( ))  , satisfies the following equation:

	

d g X t
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which coincides with the adjoint or backward chemical master equation. We note that for g(x) = xn, with n 
some multi-index, we obtain the n–th order moment of the probability distribution ℙ.

In case of having zero-th and first order reactions, the moment equations will be in the closed form, i.e., 
the moment equation for a certain order n will not depend on higher order moments. On the contrary, if the 
reaction system involves bimolecular reactions the moment equations will include higher-moments leading 
to an infinite hierarchy of moments equations that cannot be solved. To overcome this problem, moment 
closure technique that truncates the moments at a fixed order and approximates the higher order moments 
by using functions of lower moments is proposed in (Hespanha and Singh, 2005).

As mentioned before, if the amount of any species is represented by integers, the time evolution of the state 
is described by the RTCM given by Equation (10.6) and the time evolution of the corresponding probability 
distribution function is given by CME (10.13). In case of a diffusion approximation to this discrete-state sto-
chastic process, the time evolution of the state is given by the CLE of Equation (10.9). Then, the time evolution 
of the corresponding probability distribution function satisfies Fokker Planck Equation (FPE), which can be 
obtained from the CME given by Equation (10.13). To construct the FPE from the CME, we define the shift 
operator Lk, k = 1,2,…, M, of the form (Ullah and Wolkenhauer, 2011):

	 L a x a x vk k k k( ) ( ).= +

Then, an alternative representation of CME (10.13) can be given as follows:
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The Taylor expansion of the inverse operator Lk
−1  is
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By using the fact that propensity functions are smooth functions, we approximate Lk
−1  in Equation (10.14) 

with its Taylor series expansion given above. Truncating the Taylor series expansion of Lk
−1  after m = 2 and 

substituting it into Equation (10.14) gives the following FPE for the probability density function p(x,t) defined 
by ( ( ) [ , ]) ( , )X t x x dx p x t dx∈ + = :
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To simplify notation, we set Ω = 1 into the above equation which results in U(t) = X(t) and a U t a X tk k( ) ( )( ) = ( ) . 
Similar to the CME, it is hard to solve FPE analytically. Hence, numerical methods such as finite element 
and finite difference are used to obtain its approximate solutions (Pichler et al., 2013). When all propensity 
functions of the system are linear, then the first moment of the solutions of the CME and the FPE satisfies 
the corresponding ODE system obtained by the traditional deterministic approach given in Equation (10.10).

Another way of analyzing the dynamics of biochemical systems is to simulate their trajectories. Therefore, 
different algorithms that aim to find the realizations of the state vector of the system of interest have been 
proposed. Among these algorithms, the stochastic simulation algorithm (SSA) developed by Gillespie pro-
vides an exact sampling scheme. There are two versions of the SSA: the direct method and the first reaction 
method (Gillespie, 2007).

Due to the high computational costs of these simulation-based methods, more efficient versions of the SSA 
have been developed by several researchers (Cao et al., 2004, Gibson and Bruck, 2000, McCollum et al., 2006). 
The main downside of these proposed algorithms is still the great computation time required to simulate the 
system. In order to overcome this problem the τ-leaping method was proposed by (Gillespie, 2001), which 
is based on the idea that for a small fixed time increment τ the change in the propensities during [t, t + τ) is 
negligible and hence reaction counts within τ can be assumed to be Poisson distributed. Different versions of 
τ-leaping methods can be found in (Cao et al., 2005, Chatterjee et al., 2005).

Hybrid algorithms that combine deterministic and stochastic approaches are considered as an alternative 
to pure algorithms. Various types of hybrid models that partition the reactions into two or more subgroups 
such that the dynamical behavior of the species with high copy number of molecules can be modeled through 
a deterministic approach, while Markov chains are used to model the dynamics of species with low concen-
trations, as proposed in (Ganguly et al., 2015, Jahnke and Kreim, 2012).

10.5 � MEASUREMENT PROCEDURES AND THE BAYESIAN 
PARADIGM

In Section 10.2, we gave an overview of single cell technologies that are used to demonstrate cellular dif-
ferences experimentally, and in Section 10.3, we broke down the sources of the total variability into two 
components, namely, intrinsic and extrinsic noise. Additionally, in Section 10.4, we explained what kind of 
approximations exist to describe the dynamics of a given reaction system. In general, biological processes are 
poorly characterized in terms of parameters and states. That’s why the mathematical models given in Section 
10.4 involve hidden quantities. Therefore, inferring unknown states or reaction rates by using experimental 
data is an essential problem. The current section is devoted to explain the basics of Bayesian inference, which 
has a crucial importance for obtaining the unknown quantities by using all available data.

Depending on the data provided by the single cell technology, it is possible to separate the tools given in 
Section 10.2 into two categories: distribution methods, such as flow cytometry and sequencing, and trajectory 
methods, which mainly consist of fluorescence microscopy (see [Godfrey et al., 2005, Huang, 2009] and the 
references therein for detailed explanation of the measurement methods).

Flow cytometry is a tool that measures a specific feature, say ϕ, of a cell such as the abundance of a 
protein or a typical reaction’s constant by providing snapshots of cell states from the entire cell popula-
tion of interest. It produces a histogram that represents the distribution frequency of ϕ. If we observe a cell 
population consisting of K cells at L different time points, t1,t2,…,tL the flow cytometry produces the data 
D d d d dK

L L
K= ( , , , , , , )1

1
1

1
    where d k Kl

k , , , , ,= 1 2  l = 1,2,…,L represents the measurement of the k–th 
unique cell at time point t l. In the present chapter, this type of data is refereed as distribution data. In flow 
cytometry, we use a different cell population at each measurement time.

Fluorescence microscopy provides another type of data. Unlike flow cytometry, fluorescence microscopy 
measures temporal behavior of ϕ in a single cell by using time-lapsed records (Bronstein et al., 2015). The 
main drawback of this method is the provided number of measured cells compared with flow cytometry: 
this limitation leads to insufficient data for ensemble measurements. The data set produced with fluorescence 
microscopy can be represented by D = (d1, d2,..., dK) where dk, k = 1,2,..., K, is a vector whose l–th component 



172  Analysis and modeling of single cell data

shows the measurement for the k–th cell at time point tl, l = 1,2,…,L. We refer to this type of data as trajectory 
data.

If we consider distribution data for a cell population consisting of K cells, the cell state has the form 
X = ( )x x x x x xK

L L L
K

1
1

1
2

1
1 2, , , , , , , ,   , whose component, x k Kl

k , , , ,= 1 2  and l = 1,2,…,L corresponds to the 
state of the system for the k–th cell of the environment under consideration at discrete time point t l. Similarly, 
for the trajectory data, we represent the state of the cell population by X = (x1,x2,…,xK) where xk, k = 1, 2,….,K, 
is the vector of the state obtained at different time points for the k–th cell.

Although there are various ways to estimate unknown quantities from a given data, the Bayesian infer-
ence can be considered as the most prominent approach (Boys et al., 2008, Bretthorst, 1990, Golightly and 
Wilkinson, 2005). Let’s consider we have a finite set of unknowns (called hypotheses in [Wilkinson, 2006]) 
Θ1, Θ2,…, ΘS together with observed data set D. Bayesian inference aims to obtain the posterior probability 
distribution or posterior in short, ( )Θi D , with the help of the probability function named as prior prob-
ability distribution or prior in short, ( )Θi , by using the following Bayes formula
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Here, ( )D iΘ  is the likelihood function. It is considered as a function of Θi for the observed data D. Our 
prior information, obtained through mathematical models that describe the behavior of the system or previ-
ous experiments, is used to construct the prior distribution.

Since the summation in the bottom of Equation (10.15) is not a function of Θi, it can be considered as a 
constant. As a result, we obtain the relation

	
  ( ) ( ) ( ),Θ ∝ Θ Θi i iD D

which says that “the posterior is proportional to prior times likelihood” (Wilkinson, 2006).

10.6 � INFERENCE

Inferring unknown quantities such as intrinsic and extrinsic factors or hidden states is one of the most chal-
lenging problems in system biology. Naturally, depending on the provided data and the quantities that need 
to be estimated the posterior distribution will change. In the following sections, we aim to explain how we 
can construct the posterior for the trajectory and the distribution data and how these distributions can be 
used to infer the hidden quantities based on studies (Zechner et al., 2014, Zechner et al., 2012).

In Section 10.3, we mentioned that the extrinsic factors have an important role in cellular heterogeneity. 
In order to take into account the fact that extrinsic factors can fluctuate during the time scale of interest, we 
condition on the histories of them and represent it by Z. In the following sections, we assume that we have 
a particular modulating environment such that Z  is fixed as a random vector, i.e., Z Z = , distributed 
according to a probability distribution p(z|α), where z denotes a realization of Z and α represents the extrinsic 
statistics which we assume to be identical across cells in the population of interest.

It is apparent that the presence of extrinsic factors increases the number of unknowns in a cell popu-
lation. To avoid this complexity, the trajectories of the process can be marginalized over the extrinsic 
factors that differ from cell to cell, which in turn reduce the problem of inferring extrinsic factors into 
a problem of inferring extrinsic statistics that are the same through all cells in the environment under 
consideration. Therefore, in the following Sections 10.6.1 and 10.6.2, our goal is to construct posterior 
probability distributions after extrinsic factors of the process under consideration are marginalized out 
to estimate extrinsic statistics and intrinsic factors that are shared among the cells in the cell population 
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of interest by using trajectory and distribution data based on the papers (Zechner et al., 2014, Zechner et 
al., 2012), respectively.

Based on the result given in Section 10.5, it is trivial that the computation of posterior has a close relation 
with the computation of likelihood functions. Modeling dynamics of reaction systems specifies the cost of the 
computation of the likelihood function. If we use CTMCs to model the dynamical behavior of the process, the 
likelihood function corresponds to the probability distribution whose time evolution is represented by CME. 
Similarly, if we use CLE to model the system, we must solve the corresponding FPE to obtain the likelihood 
function.

For the rest of the chapter, we consider a reaction system involving N species whose abundances at time 
t ≥ 0 are denoted by X t N( ) ∈ ≥ 0. The system consists M reactions R1, R2,…, RM with corresponding reaction 
rates C = {Ck : k = 1, 2,..., M}. We model the system by using CTMCs. Therefore, the time evolution of the cor-
responding probability distribution satisfies the CME given in Equation (10.13). The propensity function of 
the k–th reaction at state X(t) = x is separated into two parts such that ak(x) = Ckgk(x) where gk is a function of 
x determined by the law of mass action.

10.6.1 �I nference for trajectory data

In this section, we will assume that we were given trajectory data obtained from the measurement of a cell 
population. Different algorithms are proposed to infer the hidden quantities of the process at interest such as 
reaction rates and states of the system in case of having this type of data. For example, in (Boys et al., 2008), 
the main steps of the Bayesian inference for estimating reaction rates of a process by using complete data, 
discrete data, and partially observed data are explained. In this study, the authors first considered an example 
in which we were given a complete data set over the time interval of interest. It is unrealistic to have such 
complete data, therefore, after explaining the main principles of the Bayesian inference for this perfect data 
scenario, different strategies are proposed to infer the hidden quantities of the process in case of having data 
observed at discrete time points and having partially observed data. We then complete the hidden parts of 
these incomplete paths by using a Markov chain Monte Carlo (MCMC) method based on reversible jump or 
block updating method. Then, kinetic rate constants can be inferred by using the complete path produced by 
MCMC methods.

In (Golightly and Wilkinson, 2011), the authors showed that particle methods can be very efficient to 
estimate the kinetic parameters of systems modeled by SDEs. An approximate Bayesian inference method 
based on the properties of the posterior distribution was proposed in (Beaumont et al., 2002). In (Hey et al., 
2015), a stochastic switch model based on LNA or a new method called birth death approximation (BDA) 
was proposed to infer unknown quantities in an extended gene expression model. Another method that uses 
LNA to obtain the likelihood function was proposed in (Komorowski et al., 2010). In (Golightly et al., 2014), 
the authors presented a new MCMC algorithm that avoids the computation of the marginal likelihood by 
proposing an approximation to it, which uses approximate methods such as LNA or CLE. When the proposed 
approximation is accepted, sequential Monte Carlo (SMC) methods are used to estimate the marginal likeli-
hood distribution of the original model.

In (Skilling et al., 2006), the authors proposed a new Bayesian method called nested sampling to obtain 
the evidence (marginal likelihood) by transforming the multidimensional integral of the likelihood func-
tion over unknown parameters to a one-dimensional integral over the unit interval. This method is used to 
estimate unknown parameters of biological processes and to make a comparison between the models that fit 
for the available data.

Finally, in (Zechner et al., 2014), the authors proposed a new method to infer the unknown molecular 
states and the reaction rates in the presence of a trajectory data for a heterogeneous cell population. The 
method separates reaction rates into two subgroups: the first group involves the reaction rates that are iden-
tical for all cells and called intrinsic factors, while the second group includes the reaction rates that change 
from cell to cell and leads extrinsic noise. Based on marginalization of the extrinsic factors, a new marginal 
process is obtained. The posterior distribution of this new process is used to estimate the unknown quanti-
ties that are identical across the cells. The details of the method will be explained in the rest of this section. 
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First, we will discuss how we can infer the unknown reaction rates of the biochemical process whose general 
properties are given above when the complete path of the process is given, then we extend concepts that are 
used to infer reaction rates of a complete path in a single cell to estimate unknown quantities in a heteroge-
neous cell population.

For the rest of the section, x[a,b] represents the complete path in between a and b, i.e., x[a,b] = {X(t) : t ϵ [a, b]} 
and x ≡ x[0,T]. Consider that biochemical reaction system of interest is observed in the time interval [0, T] and 
we have the complete path x. Let us define a vector ρ = (ρ1, ρ2,…, ρM) where ρj represents the number of fir-
ings of the j–th reaction channel in [0, T]. Total number of reactions fired in the interval under consideration 

is represented by n j

j

M

=
=

∑ρ
1

 The index of the reaction fired at time tj, j = 1, 2,…,n, is represented by ηj and 
t0 = 0,tn+1 = T.

Based on the fact that Gillespie’s SSAs are exact algorithms, given complete paths can be considered as tra-
jectories obtained by the direct method. Therefore, the likelihood function of the system can be represented 
by the joint probability distribution of random variables ηj and tj as follows:
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By using the fact that a0(x) is a piece-wise constant function, we can represent the likelihood function of 
the system in the following form:
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where  j
j j j j
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. According to the Bayesian inference, C’s are distributed 

according to a prior distribution ( )C . If we choose Cj’s from independent Gamma distributions such that 
Cj ~ Γ(aj, bj) where Γ(aj, bj) denotes the Gamma distribution with parameters aj, bj, then, the prior distribution 

takes theform ( ) ( , )C a bj j
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. Consequently, we have the likelihood function and the prior, so we obtain 

the posterior as follows (Wilkinson, 2006):
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 , as sufficient statistics for inferring rate constants of 
the system under consideration for given complete path x.
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Heterogeneous Cell Populations
Now, we will consider a cell population consisting of K cells. Naturally, each individual cell in the population 
has a different extrinsic environment. Therefore, even if we are observing the same particular process in each 
cell, we must take into account the fact that dynamics of the process will be different for each cell. In this sec-
tion, we define the effect of extrinsic factors by using the reaction rates that vary from cell to cell. Therefore, 
we separate the reaction rates into two subgroups such that S = {Si : i = 1,2,…,I} which are identical for all cells 
and called intrinsic factors and a second group Z = {Zj : j = 1, 2,…, J} called extrinsic factors. Then, we redefine 
the rate constants C = (Z1, Z2,…, ZJ, S1, S2,…, SI) such that M = J + I. As a result, propensity functions at state 
x take the form aj(x) = Zjgj(x),j = 1, 2,…, J and ak(x) = Si gk(x), i = 1, 2,…,I, k = i + J.

As discussed before, the extrinsic factors Z are distributed according to the probability distribution 
( )z α . We assume that intrinsic factors and extrinsic statistics are independent from each other, i.e., 
  ( , ) ( ) ( )S Sα α= .

Marginalization of extrinsic factors will give a conditional process X |(S,α) which is independent from 
the extrinsic factors. Now the goal of the inference problem is just to estimate intrinsic factors and extrinsic 
statics which are shared among the cells. This can be achieved by the theorem innovatied in (Aalen, 1978).

To construct the marginal process X |(S,α), we must redefine the propensity functions by using marginal-
ized extrinsic factors. For the details of the marginalized processes, we refer (Zechner et al., 2014, Zechner 
and Koeppl, 2014) and the references therein.

Theorem 10.1
The marginal propensity for the j–th, j = 1,2,...,J, reaction is
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where [ , ][ , ]Z j tx 0 α  represents the conditional mean of Zj given a complete sample path x[0,t]. The other pro-
pensities remain unchanged, i.e., ak(x) = Sigk(x), i = 1, 2,…,I, k = i + J.

The conditional mean of the extrinsic factors is defined as follows:
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where Z J is the support of random variable Zj and zj is a realization of Zj. Then, the marginal propensity func-
tion has the form:
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Together with Equation (10.16), this expression can be represented by Laplace transformations as follows:
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  where ρj represents the number of occur-

rences of the j–th reaction in the time interval of interest while 
ρ ρ β1, ,

( )
 J  denotes the partial derivatives of 

the Laplace transform  with respect to β1,..., βJ taken ρ1,..., ρJ times, respectively.
This kind of marginalization makes it possible to involve cell-to-cell variability in the inference prob-

lem. Also, marginalizing the extrinsic factors and just being interested in inferring the extrinsic statistics 
decreases the complexity of the problem. In (Zechner et al., 2014), the authors proposed a method called 
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dynamic prior propagation (DPP) that combines the marginal process with sequential Monte Carlo (SMC) 
methods to infer the unknown quantities of a particular process from trajectory data. For small systems, pos-
terior distributions over latent states can also be obtained through the respective conditional master equation 
(Huang et al., 2016).

Assume that we have trajectory data obtained from a heterogeneous cell population involving K cells. We 
want to estimate the unknown cell states between observation times in time interval [0, T], intrinsic factors 
S, and extrinsic statistics α. Then, the posterior distribution has the form:
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k≡ [ , ]0 . Since the conditional probability of each path given the intrinsic and extrinsic factors are indepen-
dent from each other, this factorization can be done. Sampling from this posterior distribution is not an easy 
task, therefore, the authors propose using a recursive Bayesian inference that makes it possible to construct 
the posterior distribution at a given observation point, tl, by using the posterior distribution given at the 
previous step tl−1, as follows:
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where dk  is a vector whose s–th component d s
k  denotes the measurement for the k–th cell at time points ts, 

s = 1,2,...,l – 1 and ρ βl
k

l
k

− −1 1,  represents the sufficient statistics calculated by using the path x[ , ]0 1t
k

l−
. The second 

line in Equation (10.18) is just a general decomposition that is always possible. Although the original model 
is Markovian, the marginalized model is not Markovian. That is why, instead of conditioning on the current 
state of the given path, we condition on the whole history of the path, i.e.,  x x[ , ] [ , ] , ,t t

k
t

k
l l l

S
− −( )1 10 α . Using suf-

ficient statistics we can condition on the current state of the system, which produces the third line. We refer 
to (Bronstein et al., 2015, Zechner et al., 2014) for the details and applications of the method explained in the 
current section.

10.6.2 �I nference for distribution data

In this section, we will explain how the distribution data can be used to infer unknown quantities based on 
the study (Zechner et al., 2012). It is well-known that estimating the hidden parameters of a cell population 
involving large number of cells measured by distribution methods requires solving high dimensional CME or 
FPE that correspond to the time derivative of the probability distribution function of the state vector that are 
represented by RTCM or CLE, respectively. To avoid this curse of dimensionality, various methods have been 
proposed to estimate hidden quantities of a cell population from the distribution data.

For example, in (Hasenauer et al., 2011b), the authors presented a method that models the dynamics of 
each cell in the cell population by using SDEs. Intrinsic noise is represented by Wiener processes, while 
extrinsic noise is considered as the result of differences in parameter values and the initial conditions through 
the cells. Properties of the extrinsic noise and the SDE modeling are used to construct a partial differential 
equation (PDE) corresponding to the time evolution of the population density, which is a joint probability 
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distribution of parameters leading to extrinsic noise and the state variables. The probability distribution 
of the measured output and the population density is approximated by kernel density estimators. Then, L2 
norm of the differences between these two distributions is minimized to infer unknown reaction rates. In 
(Hasenauer et al., 2011a), the authors proposed a new inference method that can be used to estimate the 
parameters of a heterogeneous cell population from the provided sparse and noisy data. Differently than 
(Hasenauer et al., 2011b), (Hasenauer et al., 2011a) uses ODEs to describe the dynamics of each single cell in 
the environment of interest, and, similar to (Hasenauer et al., 2011b), cell-to-cell variability is considered as 
the result of differences in parameters distributed according to a parameter density function. The method 
is based on parametrization of the parameter density that produces a parametrized posterior distribution 
whose samples are obtained by the Metropolis Hastings algorithm (MHA). In (Munsky et al., 2009), the 
authors used CTMCs to model the gene expression model. One norm difference between the measured dis-
tribution and the solution of the corresponding CME is obtained as a function of unknown parameters, and 
the parameter values that minimize this function are considered the optimal parameter set. In (Neuert et 
al., 2013), single cell experiments and CTMC models were combined to find the best model to describe the 
dynamics of the osmotic stress response in a yeast.

In (Zechner et al., 2012), the authors proposed a moment-based method that estimates S, α values, which 
were described in the previous section. We devote the rest of this section to explaining this method. Although 
extrinsic factors Z were considered as a subgroup of reaction rates in the previous section, they are random 
variables in the current section that represent a constant extrinsic component. If we consider a cell population 
involving K cells, the posterior distribution that is used to estimate extrinsic statistics and intrinsic factors 
is as follows:
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When the number of cells in the environment under consideration increases, it becomes difficult to ana-
lyze the given posterior distribution. To avoid this disadvantage, in (Zechner et al., 2012), the authors pro-
posed a moment-based inference method that uses moment closure method to obtain a system of equations 
of lower moments.

As mentioned previously, the stochastic process of interest is modeled by CTMCs, therefore, the prob-
ability distribution of the state vector of the system satisfies the corresponding CME whose moments can 
be approximated by the moment closure techniques (Hespanha and Singh, 2005). Time derivative of the 
approximate moments of the CME for each single cell depends on the extrinsic factors, which are different for 
each cell, and the intrinsic factors, which are identical for all cells. Due to the differences in extrinsic factors 
between cells, naturally, we will obtain different differential equations. To obtain the moments of cell popula-
tion, we must average approximate moments of CMEs for each cell, which requires a high computational cost. 
In (Zechner et al., 2012), the authors obtained the time derivative of the population-moments by marginal-
izing the time derivative of moments with respect to extrinsic variable Z. Then, the obtained moment equa-
tions are closed by replacing the higher order moments, say E, by functions of the moments with lower order 
than E. As a result, the following system of equations for the approximate population moments is obtained:
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where µ  represents the moments of species up to order E and µX,Z involves the cross moments of species 
and the extrinsic statistics given up to order E. A(S), B(S), D(S), F(S), H(S), R(S), T(S) are functions of intrinsic 
parameters shared among the cells, and g and h are functions obtained by the moment closure techniques.
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The method proposes using the following posterior instead of the posterior distribution given in Equation 
(10.19):
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where µ̂l
e  represents the empirical moment of order E at time point tl. To simplify the notation, let’s define a 

vector: ˆ ˆ : , , , , , , ,µe
l
e l L e E= ={ } =µ 1 2 1 2 

.
Since each cell is measured at different time points and different data sets are used to obtain moment esti-

mates for each order, the posterior distribution is given by:
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For the purpose of cleaner representation, let’s consider only a single species is measured; the extension 
to more than one species is straightforward. The E–th order empirical moments at time point tl satisfies the 
following equation

	

ˆ
, ,

ˆ , , , ,

µ

µ
l
e

l
k

k

K

l
k

l

e

k

K

K
x e

K
x e

=

=

−( ) =

=

=

∑

∑

1 1

1 2 3

1

1

1

 EE.














When we have a large system, the central moment theorem says that the experimental moments are nor-
mally distributed, i.e., ˆ ,( )µ µ σl
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e  represents the exact e–th moment at time point tl and 
its corresponding variances are denoted by σ l
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 is approximated by 
Equation (10.20). Then, the posterior distribution is proportional to:
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where A represents the covariance matrix whose components are computed by Equation (10.20) while 

γ µ σ γ µ σl l l l l l
1 1 1 2 1 1 1 2

= ( )( ) = ( )( ), , ˆ ˆ , ˆ  (Bronstein et al., 2015). More complicated priors than the independence 
prior,   ( , ) ( ) ( )S Sα α= , assumed here can be used if respective prior information is available.

At this point, we can use MHA to sample from the posterior distribution. Since MHA plays an important 
role in this chapter, we will provide a brief summary. Suppose we want to draw samples θ from the target 
probability distribution p(θ), MHA generates samples by using a proposed probability distribution q(θ) and 
accepts or rejects these samples by using the following algorithm:

	(1)	Set j = 1 and sample θ0 ~ q(θ).
	(2)	Generate a candidate sample θ θ θcand

j
cand
j jq −( )1 .

	(3)	Compute the acceptance probability
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	(4)	Accept the candidate sample and set θ θj
cand
j=  with probability β θ θcand

j j−( )1  or reject it with probability 

1 1− ( )−β θ θcand
j j  and set θ j = θj−1

	(5)	Set j = j + 1 and go to step (2).

In our model, we want to infer S and α values which means that θ = (S,α). Our target distribution is the 
posterior, so p S S E( , ) , ˆ , ˆ , , ˆα α µ µ µ= ( ) 1 2

 . Finally, we can use the prior distribution as a proposal distribu-
tion q S S( , ) ( , )α α=  . Applications of the method can be found in (Bronstein et al., 2015, Zechner et al., 2012).
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Quantifying lymphocyte receptor diversity

THIERRY MORA AND ALEKSANDRA M. WALCZAK

11.1 � INTRODUCTION

To protect its host against pathogens, the adaptive immune system of jawed vertebrates expresses a large 
repertoire of distinct receptors on its B and T lymphocytes. These receptors must recognize a wide range of 
pathogens to trigger the response of the adaptive immune system. Since each receptor is specialized in recog-
nizing specific pathogens, a very diverse repertoire of receptors is required to cover all possible threats. While 
one can now sequence the repertoires of individuals with some depth, it remains unclear how to quantify or 
even define their diversity and what aspects of this diversity are relevant for recognition. These fundamental 
questions are further obscured by the purely technical but important issue of reliably sampling immune 
repertoires.

The actual number of lymphocytes varies from species to species, but in all cases is large. Estimates of the 
number of T cells in humans are of the order of 3 · 1011 cells [1]. Each cell expresses only one type of receptor. 
Cells proliferate and form clones, so that many distinct cells may share a common receptor. As we will dis-
cuss further, the number of unique distinct receptors is very hard to estimate. However, even a conservative 
lower bound of 106 unique receptors [2,3] is much larger than the total number of genes in the human genome 
(~ 20,000). This broad diversity of receptors is not hard-coded, but is instead generated by a unique gene rear-
rangement process that couples a combinatoric choice of genomic templates with additional randomness.

Each receptor is made up of two arms: B cell receptors (BCR) have a light and a heavy chain, while T cell 
receptors (TCR) have analogous α and β chains. Each chain is composed of three segments called V, D, and 
J in the case of heavy or β chains, and two segments V and J in the case of light or α chains. These segments 
are combinatorically picked out of several genomic templates for each type, in a process called V(D)J recom-
bination [4], as schematized in Figure 11.1a. This recombination is achieved by looping DNA and excising the 
template genes that lie between the selected gene segments. In the case of heavy or β chains, the D-J junction 
is assembled first, followed by the V-D junction. The precise number of templates for each segment differs 
from species to species, but generally results in a combinatoric diversity of ~ 1000 for each chain. This com-
binatoric assortment is followed by stochastic nucleotide deletions and insertions at the junctions between 
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Figure 11.1  (a) V(D)J recombination of T and B cell receptors (TCR and BCR). TCRs and BCRs are made of 
two chains, one shorter and one longer, called the α and β chains for TCRs, and the light and heavy chains for 
BCRs. Each chain is obtained by a gene rearrangement process called V(D)J recombination, by which two (for 
the shorter chain) or three (for the longer chain) segments are assembled together from palettes of templates 
encoded in the genome. At each of the junction between these segments, further diversity is added by sto-
chastic deletions and insertions of random, non-templated nucleotides. (b) Evolution of repertoires of TCR 
and BCR. After their generation by V(D)J recombination, receptors first pass a selection process, called thymic 
selection for TCRs, whereby nonfunctional and self-reactive receptors are discarded. They are then released 
into the periphery, where they may divide, die, proliferate, and differentiate as a function of the signals they 
receive from antigens or other immune cells. In addition, BCRs are subject to somatic hypermutations as B cells 
mature in germinal centers following an infection.
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the newly assorted V-D and D-J fragments (or V-J fragment for the shorter chain), forming what is termed 
junctional diversity. This stochastic step largely increases the repertoire diversity, as we will show in detail. 
As a result of this procedure the receptor DNA may be out of frame, or the encoded protein may not be func-
tional or correctly folded. The newly assembled β chain sequences then are tested with a surrogate α chain for 
their binding and expression properties. If they pass this selection step, the second chain is assembled and the 
whole receptor undergoes a similar round of selection against proteins that are natural to the organism, or 
self proteins. Receptors that do not bind any self-protein or bind too strongly to self-proteins are discarded. If 
a receptor fails these tests, the cell may attempt to recombine its second chromosome.

The processes of recombination and selection are stochastic, and therefore are characterized by their own 
intrinsic diversity, which we may view as a statistical or potential diversity. It is distinct from the diversity 
realized in a given individual at a given time, with its finite number of recombined receptors, much like the 
potential diversity of the English language is distinct from—and much larger than—the diversity of texts 
found in a single library. While most previous discussions, with the exception of [5], have focused on the real-
ized rather than potential diversity of receptors, in this chapter we will discuss both.

After generation and selection, B and T cells feed the naive repertoire where they attempt to recognize 
foreign antigens (Figure 11.1b). The dynamics of lymphocytes vary widely between B and T cells, as well as 
between species. However, a common feature is that cells whose receptors successfully bind to antigens pro-
liferate, producing either identical offspring (T cells) or that differ by somatic point hypermutations (B cells). 
A fraction of the cells that have undergone proliferation are kept in what is called the memory repertoire, 
while cells that have not received a proliferation signal stay in the naive repertoire. Cells that share a com-
mon receptor, or “clonotype,” define a clone. The clonal structure of the lymphocyte repertoire is one of the 
characteristics of repertoire diversity.

The diversity of lymphocyte receptors can be studied with the help of repertoire high-throughput sequenc-
ing experiments [2,6–8], which have been developing rapidly over the last few years [9–14]. These experiments 
focus on the region of the chain that encompasses the junctions between the recombined segments, allowing 
for the complete identification of the receptor chain. This region includes the Complementarity Determining 
Region 3 (CDR3), defined from roughly the end of the V segment to the beginning of the J segment, which 
is believed to play an important role in recognition. Because sequence reads can only cover one of the two 
chains making up the receptor, most studies have focused on the diversity of one chain at a time. However, 
new techniques make it possible to pair the two chains together [15–17], opening the way for the analysis of 
repertoires of complete receptors. In general, a tissue (blood, lymph node, thymus, germinal center, etc.) sam-
ple is taken and the mRNA or DNA of the lymphocytes of interest are sorted out. Different technologies have 
been developed for DNA and mRNA. Data are usually clustered and error-corrected for PCR and sequencing 
errors [18]. Many recent experiments use unique molecular barcodes associated to each initial mRNA mole-
cule, which help correct for PCR amplification noise [19–21], and allow for the direct measurement of relative 
clone sizes using sequence counts. Unless an error occurred in the first round of PCR, barcodes can reliably 
pick up even very rare sequences, as long as they are present in the sample. The output of these experiments is 
a list of sequences of receptor chains. If unique molecular barcodes were used, the number of RNA molecules 
in the initial sample can be evaluated from the number of distinct barcodes with the same receptor sequence. 
This information is the starting point for the analysis of repertoire diversity.

In this chapter we discuss approaches for estimating repertoire diversity from the datasets generated by 
these new technologies. We first review and discuss the different definitions of diversity—species richness, 
entropy, and other diversity indices—and their relation to the distribution of clonotype frequencies. We also 
emphasize the need to distinguish the different levels at which diversity may be evaluated: recombination 
diversity, post-selection potential diversity, actual diversity realized in a particular individual, in a particu-
lar tissue, with a particular phenotype, etc. We review recent efforts to calculate accurately the diversity 
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of receptors generated by V(D)J recombination using high-throughput sequencing data. We discuss the 
challenges of estimating diversity when the clonal structure is scale-free, as is generically the case in many 
reported cases. We conclude by discussing the importance of sequence diversity and contrast it with more 
biologically relevant but elusive notion of functional diversity.

11.2 � A FAMILY OF DIVERSITY MEASURES

A number of different diversity measures have been proposed to quantify the vastness of lymphocyte reper-
toires [22–24]: the Shannon entropy [25], the Simpson index [26], and most commonly the total number of 
clonotypes or species richness [2,3,27–29]. These diversity measures are taken from ecology where they are 
used to quantify the diversity of species. They are all related to a generalized family of diversity measures 
called the Rényi entropy [30], parametrized by β and defined as:
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where p(s) is the probability, frequency, or abundance of a given receptor sequence or clonotype s. For β →1 
we recover Shannon’s entropy:
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The exponential of the Rényi entropy defines a generalized class of diversity indices called Hill 
diversities [31]:

	
Dβ β= exp[ ].H 	 (11.3)

This index can be interpreted as an effective number of clonotypes in the data. For β = 1, it is simply 
the exponential of Shannon’s entropy, and we will refer to it as Shannon’s diversity. For β = 2, it reduces 
to the inverse of Simpson’s diversity index, D2 = 1/ ∑s p(s)2. The Simpson index gives the probability that 
two sequences drawn at random from the distribution are identical, and is related to a common measure of 
inequality, the Gini-Simpson index, defined as 1 – 1/D2. D0 is the species richness, while D∞ = 1/maxs p(s) is 
the inverse of the Berger-Parker index.

Each of these diversity indices is a summary statistics of the information contained in the distribution 
of clonotype frequencies, i.e., the distribution of values of p(s) themselves. This frequency distribution may 
in fact be viewed as the most complete description of the diversity of the repertoire. Conversely, the whole 
spectrum of Rényi entropies Hβ is sufficient to reconstruct the full clonotype frequency distribution. In other 
words, the functions Hβ , Dβ , and the distribution of frequencies carry the exact same information [32]. The 
choice of a single diversity measure Dβ , rather than the full frequency distribution, is often useful to make 
comparisons between individuals, tissues, experiments, etc. When β is large enough, it may also be less sensi-
tive to experimental noise than the frequency distribution.

It is possible to get a rough estimate of Hill diversities by simple inspection of the frequency distribution, 
represented as a rank-frequency graph with a double logarithmic scale [32]. A simple geometric construc-
tion, illustrated by Figure 11.2, helps understand the meaning of the various indices, what properties of the 
underlying cumulative clone size distribution they are most likely to capture, and where one should stop 
trusting them because of insufficient sampling. The intersection of the the tangents of slope –1 and –β–1 to the 
rank-frequency curve gives the Hill diversity index Dβ. This construction emphasizes the fact that different 
diversity measures focus on sequences of various frequencies: large values of β tend to favor very common 
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clonotypes, while low values favor rare ones. Geometrically, tangents of small slopes (large β, e.g., Simpson’s 
index or Shannon’s entropy) osculate the rank-frequency curve at high frequencies, while large slopes do so 
at low frequencies. Thus, diversity indices Dβ with a small β rely very strongly on correctly capturing the tail 
of rare clonotypes. This is particularly true for D0, the species richness, which is very hard to estimate as it 
requires estimating the number of unseen clonotypes. This observation warns us against the pitfalls of esti-
mating diversity when dealing with incomplete samples. The larger the β, the more reliable the Hill index Dβ 
should be. In general, estimates of the species richness D0 should be taken with extreme caution, as we will 
further discuss in concrete examples.

11.3 � QUANTIFYING V(D)J RECOMBINATION

The repertoire is a dynamic ensemble of receptors that evolves somatically, by cell division, cell death, 
and hypermutations in the case of B cells. As the repertoire is shaped, its diversity changes significantly. 
Repertoires at different functional stages, from generation to memory, show different levels of potential and 
realized diversity. By analyzing unique receptors from high-throughput sequencing data, one can track these 
changes. We start by describing the diversity of the initial stochastic recombination of receptors.

Each cell has two sets of chromosomes. If the first V(D)J rearrangement results in a non-functional recep-
tor, the second one recombines [33]. When this second rearrangement is successful, the cell expresses the 
functional receptor but keeps the rearranged nonfunctional DNA. This nonfunctional receptor is expressed at 
a basal, leaky level despite allelic exclusion, especially for α chains, and may also be captured by genomic DNA 
sequencing. These out-of-frame receptors offer unique insight into the raw generation process because they 
were never selected for, as they owe their survival to the gene expressed from the other chromosome. We can 
therefore use these sequences to gain insight into the generation process and analyze the potential diversity of 
recombination, i.e., the statistics of unique receptors that can ever be formed as a result of V(D)J recombination. 
As already noted, this diversity of the generation process should not be confused with the actually realized 
diversity in a given individual, which is generically smaller.

As the numbers will show, the recombination probability of each generated sequence is so small that it is 
hopeless to sample their distribution by simply counting how often we observe them. Besides, this counting 
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number is not expected to reflect the frequency of generation alone, because of lymphocyte population 
dynamics. As we pointed out, cell proliferation is independent of the identity of the out-of-frame sequence of 
interest, and the limit of infinite data should not in principle affect such an estimate. However, for any dataset 
coming from a single individual, these heterogeneities in the clone size completely dominate the sequence 
counts. For this reason, it is suitable to count each unique sequence only once to remove these possible biases. 
Starting with a dataset of unique realizations of the recombination process, we need a model to describe their 
probability distribution. This model is based on what we know about the recombination process: choice of 
V(D)J segments, stochastic number of deletions of each gene segments, and stochastic number and identities 
of inserted nucleotides at each junction. Thus, taking the simpler case of α or light chains, the probability of 
a given recombination scenario r can be written as:

	 P r P V J P V V P J J Prearr ( ) ( , ) (del= | ) (del | ) (ins), 	 (11.4)

where delV and delJ denote the number of deletions at the V and J ends, and “ins” is the list of inserted 
nucleotides. A very similar expression accounting for three genes and two junctions can be written for the β 
or heavy chains. The form of the model is motivated by biophysical considerations: the number of deletions 
of the J end does not depend on the choice of the V segment, the number and identities of insertions does 
not depend on the gene choice and follows a Markov chain. These assumptions, however, should and can be 
checked consistently by verifying that no correlations in the data remain unaccounted for by the model [34].

The parameters of the generation model (11.4) cannot be directly read off the sequences, because it is 
impossible in general to assign with certainty a recombination scenario to a given sequence as many distinct 
scenarios can lead to the same sequence through convergent recombination [35]. As we will quantify below, 
this effect is very significant and cannot be ignored. Importantly, it forces us to think of scenarios or sequence 
annotation in a probabilistic manner, rather than try to select the most probable one as is often done in anno-
tation software [36–38]. The generation parameters can be inferred using a standard implementation of the 
Expectation-Maximization algorithm, an iterative procedure that maximizes the likelihood of the data. The 
algorithm works by collecting summary statistics about the elements of the recombination scenarios to build 
the model distribution (11.4). The recombination scenarios are themselves assigned probabilistically using 
the previous iteration of the model. The algorithm, which relies on the enumeration of all plausible scenarios 
giving rise to each sequence, is computationally heavy but can be significantly sped up after mapping the 
problem onto a hidden Markov model and using standard dynamic programming tools [39].

Once a recombination model such as Eq. 11.4 has been inferred, it can be used to generate and analyse 
sequences with the same statistical properties as the original data. It can also be used to quantity the various 
types of diversity indices discussed in the previous section. Note that, because of convergent recombination, 
the diversity of generated sequences is expected to be smaller than the diversity of the scenarios that produce 
them. The generation probability of a sequence s is given by the sum of the probabilities of all scenarios that 
could have given rise to this sequence:

	
P s P

r s

gen rearr( ) ( ).=
→

∑ r 	 (11.5)

The diversity measures calculated from Pgen and Prearr are therefore distinct.
Recombination models have been inferred for T cell β [34] and α [39] chains, as well as for B cell heavy 

chains [40]. In all these cases, the distributions inferred from different individuals were found to be surpris-
ingly similar, with some variability in the gene segment usage, but very reproducible deletion and insertion 
profiles, consistent with a common biophysical mechanism of enzyme function. The entropy H1 of sequences 
and recombination scenarios obtained from these models are reported in Figure 11.3a. Because the distribu-
tion of scenarios (11.4) is a product of its various elements (gene choice, deletions, insertions), its entropy 
can also be broken up into their respective contributions. The entropy difference between recombination 
events and sequences, is the entropy of convergent recombination, which quantifies the diversity of scenarios 
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resulting in the same sequence. For example, it is five bits for TCR β chains, corresponding to a fairly large 
Shannon diversity number, D1 ~ 30. Note that the total number of possible scenarios for a given sequence, D0 
is much larger, but its precise definition depends on the cutoff we impose on the possible number of deletions 
and insertions.

Diversity in the heavy chain of B cells is larger than that of T cells. This difference can be attributed to lon-
ger CDR3 regions due to many more insertions at the junctions between the genes. The receptor generation 
process is characterized by an entropy of ~ 70 bits for BCR heavy chains and ~ 43 bits for TCR β chains. These 
numbers correspond to a Shannon diversity index D1 ~ 1021 and ~ 1014, respectively.

Although most studies have focused on the Shannon diversity index D1, the full diversity spectrum 
of the generation process can be calculated. In Figure 11.3b we show the rank-frequency curve of human 
TCR β chains, taken from [32] based on the model of [34]. As explained in the previous section, the full 
range of diversity indices Dβ can be calculated from that curve, and are shown in Figure 11.3c. In addition 
to the Shannon diversity D1 already discussed, of special interest is the inverse of the Simpson index, D2. 
The Simpson index corresponds to the probability that the same nucleotide sequence is obtained from two 
independent draws. It gives the expected number of shared sequences between two individuals, normalized 
by the product of their repertoire sizes, assuming that their receptor sequences were generated indepen-
dently from the same source. Thus, it is deeply linked to the notion of “public” sequences found in several 
individuals, and making up the public repertoire [26,35,41]. This number, estimated to be 1/D2 ~ 3 · 10–10 
for human TCR β chains from the model, is in fact very close to that measured in the data for out-of-frame 
sequences [34].
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selection, or the B cell counterpart, the entropy is further (light gray). (b) Rank-frequency curves of TCR β chain 
sequences, upon generation (dark gray), and following thymic selection. (c) Hill diversities for the same sta-
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It is important to stress that, however large, these numbers are not the total number of possible receptor 
sequences, D0, which is much larger. As we can see from the rank-frequency plot of generated TCR β chain 
sequences (Figure 11.3b, red), generation probabilities span over 20 orders of magnitude. The largest rank of 
~ 1030 is in fact a lower bound to D0 limited by the finite sampling of sequences by the model. To better estimate 
D0, one may count the total number of possible deletion profiles reported for each gene, and multiply that 
number by the total number of possible insertion profiles of at most Lmax nucleotides, ( )max4 1 31L /+ − , for each 
of the two junctions. Doing so with Lmax = 26, the largest number of insertions reported in [34], yields an upper 
bound of D0 ~ 2 · 1039 for the TCR β chain alone. However, because this estimate is very sensitive to the value 
of Lmax, which is not precisely known and may depend on the sample size, it must be taken with some caution.

The above estimates only include heavy or β chains. Coupling this chain with the light or α chain adds 
further diversity. Since the shorter (α and light) chains have only one junctional region between the V and J 
genes, their diversity is much lower. For example, TCR α chains were estimated to have a generation Shannon 
entropy of H1 = 30 bits, or D1 ~ 109 [39]. The part of the entropy that is attributable to the gene choice is similar 
to that reported for the β chain, of the order of 10 bits. While that contribution was only a small fraction of the 
overall diversity for the β chain, it is comparable to that of insertions for the α chain. The number of possible 
α chain sequences can be estimated similarly to the β chain, yielding D0 ~ 5   1021.

Assuming that the two chain rearrangements are independent, the overall diversity of the pool from which 
TCRs are generated is about H1 ~ 75 bits, or D1 ~ 1023, and a total potential repertoire of size D0 ~ 1061. Note 
that this last estimate is much larger than the classically quoted number of 1015 from [42], which assumed a 
much more restricted junctional diversity. Analysis of recently published α-β sequence pairings should allow 
for more precise estimates of these diversity numbers for TCRs [17] and BCRs [15].

All these diversity numbers are very large. Clearly, a single individual is only able to sample a tiny fraction 
of the potential pool of receptor sequences, with a total T cells count of ~ 3 · 1011 in humans [1].

11.4 � THYMIC SELECTION AND HYPERMUTATIONS

After sequences have been generated by V(D)J recombination, they undergo an initial selection process. For 
T cells, this takes place in the thymus and is called thymus selection. An analogous process occurs for B cells. 
Sequences that bind too strongly to the host’s own self-proteins, as well as those that bind too weakly to them, 
are discarded. By analyzing the in-frame naive receptor repertoire, one can study how this initial selection 
process affects the diversity of the repertoire. While the recombination diversity, Pgen(s), described the poten-
tial variability from the gene rearrangement process, this post-selection naive diversity, Psel(s), describes the 
statistics of sequences actually found in the naive repertoire. It is still a potential diversity, as it refers to a 
statistical ensemble of receptors, rather than a finite set of receptors found in a given individual.

One can define a sequence-dependent selection factor Q(s) = Psel(s)/Pgen(s) quantifying how the distribu-
tion of sequences is affected by thymic selection. As before, sampling from Psel (s) is impossible in practice 
because of the too large number of sequences, and models of the selection factor Q(s) are needed. For example, 
it may take the factorized form
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where (a1, a2,…, aL) is the amino-acid sequence of the CDR3 region of length L, and the single-position fac-
tors qi;L(a) are inferred from the data using maximum likelihood. This model describes very well the statis-
tics of naive and memory TCR β-chain sequences [43], α-chain sequences [44], and naive BCR heavy chain 
sequences [40]. The selection factors Q(s) were shown to depend only on the amino-acid rather than nucleo-
tide sequence, consistent with our hypothesis that selection acts on the protein product and its functional 
properties (folding, stability binding, etc.). Although selection factors may vary significantly from individual 
to individual in the statistical sense, these differences are relatively small. In addition, models inferred from 
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the memory and naive sequence repertoires were found to be similar, suggesting that the selection factors Q(s) 
capture universal functional properties of the receptor proteins.

Diversity numbers can be estimated from the model of Eq. 11.6. The entropy of the post-selection dis-
tributions of receptor sequences, Psel(s) = Q(s)Pgen(s) are shown in green in Figure 11.3a. The rank-frequency 
distribution and Hill diversities Dβ of the post-selection ensemble of TCR β chain sequences are shown in 
green in Figures 11.3b and c.

Diversity is reduced by selection from 47 to 38 bits for TCR β chains, from 30 to 26 bits for α chains, and 
from 70 to 58 bits for BCR heavy chains, corresponding to D1 ~ 3 · 1011 for β chains, D1 ~ 7 · 107 for α chains 
(or a combined TCR diversity of 2 · 1019 assuming independence between the two chains), and D1 ~ 3 · 1017 

for heavy chains. About two bits of this reduction are due to the removal of visibly nonfunctional sequences 
(out-of-frame or having stop codons). However, most of the diversity loss is caused by negative selection 
against sequences that were unlikely to be produced in the first place. Frequent sequences are enriched by the 
selection process, while rare ones are more likely to be removed. This enhancement of inequalities between 
sequences is the main source of entropy reduction by selection.

It should be noted that these estimate rely on an effective model (11.6), which may miss many impor-
tant aspects of the selection process. In particular, negative selection, which prunes the repertoire of specific 
sequences that bind to self-antigens, is likely not accounted for by the model. This further diversity loss 
would be specific to each individual and its set of self-antigens, which depends on its HLA types. To assess 
whether all the aspects of selection that are not individual specific are well captured by Eq. 11.6, one can 
ask whether the Simpson index calculated with the model, 1/D2, is consistent with the observed repertoire 
overlap between distinct individuals, as it should if the two repertoires were drawn independently from the 
same distribution Psel(s). Indeed the model and data showed good agreement [43], confirming that the model 
describes the statistics of sequences accurately.

Following their release into the periphery, cells undergo a somatic evolution process by which they divide, 
die, or proliferate depending on the signals they receive. In the case of T cells, it is not clear how this evolu-
tion affects the potential naive diversity, as TCR β-chain sequences expressed by memory cells are statis-
tically indistinguishable from naive ones [43]. In contrast, BCRs experience somatic hypermutations as B 
cells proliferate upon antigen recognition, during the process of affinity maturation. These hypermutations 
are stochastic but do not occur uniformly across the receptor, favoring instead sequence context dependent 
“hotspots” [45,46]. High-throughput repertoire sequencing now makes it possible to build predictive statisti-
cal models of hypermutations by disentangling mutation from substitution rates using either synonymous 
mutants [47] or out-of-frame sequences [40,48]. Out-of-frame sequences have a raw mutation rate ranging 
from a 5% to 10%, implying an additional 0.4 bits per nucleotide. This additional diversity is a huge boost if 
this estimate holds for the whole length of the receptor sequence. However, the increase in diversity due to 
hypermutations should depend on how long cells have been allowed to evolve. As affinity maturation consists 
of alternating cycles of mutation and selection, the effects of hypermutations on diversity cannot entirely be 
decoupled from selective pressures. The inference of selection during affinity maturation using repertoire 
sequencing is currently a very active field of study [23,49–55].

11.5 � REALIZED DIVERSITY

Thus far we have focused on the potential diversity of lymphocyte receptors. Its object is the probability that 
each receptor sequence has been generated, selected, and, in the case of BCR, hypermutated into its final 
form. One can also study the realized diversity of receptor clonotypes actually present in a given individual 
at a given time. The relative frequency of clonotypes in an individual can vary greatly depending on the his-
tory of cell divisions and deaths, and is in general distinct from the probabilities Pgen and Psel discussed so far. 
Measuring accurate clonotype frequencies relies on trustworthy counts made possible by unique molecu-
lar barcodes associated to original mRNA molecule [19–21] (with the caveat that cells may express variable 
amounts of mRNA molecules). One can build the rank-frequency relation as before, by ranking clonotypes 
in a given individual from most common to rarest. This relation can be measured for different phenotypes 
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(naive or memory, CD4 or CD8), in different tissues or organs, or at different ages, to study the organisation 
and evolution of diversity.

In Figure 11.4 we plot the rank-frequency relation for the unpartitioned TCR β-chain repertoires sampled 
from the blood of six individuals [44] and sequenced using unique molecular barcodes. A striking feature of 
these relations is that they seem to follow a power law, f ∝ 1/rα, where f and r denote the clonotype frequency 
and rank, with exponent a ranging from 0.65 to 1, with a mean of 0.78. This observation is consistent with 
previous reports on zebrafish BCR [6,25] or mouse TCR repertoires [5]. These power laws cannot be explained 
by a neutral model in which cells divide and die stochastically at a constant rate: calling μ and v the division 
and death rates and assuming a constant input of new clones from the thymus, one can show that the dis-
tribution of clone sizes n takes the form P(n) ∝ (1/n) (μ/v)n. Instead, power-laws are consistent with models 
where each clone evolves under a fluctuating fitness shaped by its changing antigenic environment [56].

Power-law frequency distributions make it challenging to estimate diversity measures Dβ [32]. This dif-
ficulty can be understood by considering the geometric construction of diversities of Figure 11.2: examining 
the rank-frequency curve of Figure 11.4, no tangent of slope –1 can be easily defined. Mathematically, the nor-
malization of the distribution strongly depends on the maximal rank, as ∑r 1/r α is a diverging series, mean-
ing that the distribution is dominated by a very large number of very small clonotypes. This is particularly 
problematic as these rare clonotypes are not well captured by incomplete sampling.

Most past studies of repertoire diversity have actually focused on the hardest diversity measure to estimate 
in the face of these sampling issues, namely the species richness index D0. By sequencing a subset of the rep-
ertoire with low-throughput techniques and extrapolating to the entire repertoire, Arstila and collaborators 
found a lower bound to the total size of the TCR repertoire of 106 distinct β chains, each pairing to 25 distinct 
α chains, i.e. 2.5 · 107 distinct TCRs [27]. This bound has since been revisited using high-throughput sequenc-
ing data, yielding the same order of magnitude of a few millions [2,3].

In practice, most experiments are performed on samples of blood or tissues and do not sequence every 
single cell. Even experiments using a whole tissue are subject to losses. The problem of species richness esti-
mation from incomplete samples is not specific to lymphocyte repertoires and has been extensively discussed 
in ecology. A number of estimators of D0, such as Chao1 [57], the abundance-based coverage estimator [58], or 
more recently DivE proposed in the context of TCRs [29], have been developed to address this issue. Another 
estimator using multiple samples, Chao2 [59], has recently been used to yield a lower bound of 108 distinct 
TCR β chains in humans [28]. All these estimators implictly assume that the distribution of frequencies is 
reasonably peaked, and may not be appropriate for broad distributions such as power laws.
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Figure 11.4  Clonotype frequency vs. rank in the sequenced un-partitioned repertoires of six individuals from 
Pogorelyy et al. (From Pogorelyy, M. V. et al., PLoS Compute Biol, 13(7), e10055722, 2017.) These relations are 
close to a power law with exponents ranging from –0.65 to –1. The dashed line shows a slope of –1.
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To illustrate the inadequacy of most estimators to capture the true species richness of power-law distrib-
uted clone sizes, we numerically generated D0 = 107 distinct clonotypes, and fixed their abundance to

	 C rr = ( / ) ,D0
α 	 (11.7)

where r = 1,…, D0 is the rank of the clonotype ordered by abundance, and α = 0.8 to mimick the data of Figure 
11.4. We simulated a sample comprising 1% of the entire dataset, by drawing Sr, the size of clonotype of rank 
r in the sample, from a Poisson distribution of mean Cr/100. We calculated Chao1,

	
D D n

n0 0
1
2

2
2

≈ +raw , 	 (11.8)

where D0
raw  is the number of sampled clonotypes (Sr > 0), n1 is the number of singletons (Sr = 1), and n2 the 

number of doubletons (S2 = 2). This estimate gave D0 = 3 · 106 instead of the true value of 107. Dividing the 
dataset into five subsamples as in [28], and calculating Chao2 yields a similar estimate, 3.2 · 106. The reason for 
this underestimation is deep and does not depend much on the details of the estimator. When downsampling, 
one loses information about the rare clones, which dominate the species richness. Extrapolating their number 
from larger clones must rely on implicit or explicit assumptions about the clonal distribution, which are likely 
not satisfied by fat-tailed distributions such as power laws. It is therefore likely that most current estimates 
from high-throughput sequencing data are only lower bounds to the true species richness.

In fact, simple theoretical arguments based on thymic output estimates and neutral models of clonal 
evolution give upper bounds of 1010-1011 [60,61]. However, since we have argued that the power-law in the 
rank-frequency curve did not support the hypothesis of neutrality, it is legitimate to ask what species richness 
would be predicted from a power-law distribution of clone sizes. Assuming that the rank-size relation is given 
by Eq. 11.7, the average clonotype size reads:
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where we have approximated the sum by an integral, which is valid for large D0. Plugging α = 0.8 gives an 
average clone size of five cells, and hence a species richness D0 = 3 · 1011/5 ~ 1011 of the same order of magni-
tude as total number of T cells. Note however that this estimate is very sensitive to the value of α, as the aver-
age clone size becomes ~ ln(D0) for α = 1, and ζ α α( )D0

1−  for α > 1, where ζ(α) is the Riemann zeta function.
Although the validity of the power law across the entire spectrum of clone sizes is a matter of debate, this 

example emphasizes the need for models to extrapolate the size distribution to the very rare clonotypes, the 
knowledge of which is essential for evaluating species richness.

11.6 � TOWARDS A FUNCTIONAL DIVERSITY

All the diversities discussed in this chapter apply to nucleotide sequences. These estimates demonstrate the 
potential of the adaptive immune system to generate a huge diversity of sequences, while identifying the 
biases of their generation and selection. However, they do not directly inform us about the functional diver-
sity of the repertoire, defined as its capacity to recognize a wide variety of antigens. First, the binding prop-
erties of receptors are determined by their amino-acid sequences, the diversity of which is smaller due to 
the degeneracy of the genetic code. But more fundamentally, a given antigen can be recognized by many 
receptors—the flipside of cross-reactivity or polyspecificity. Mason [62] argued that if not for cross-reactivity, 
an individual would need a repertoire as large as the number of antigens it can encounter, or ~ 1015 for TCRs, 
which is well beyond the number of lymphocytes a human or a mouse can afford. Simple models can help 
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estimate the minimal size of the functional repertoire [5,63,64]. Theoretical arguments also suggests that 
cross-reactivity gives a certain freedom in the identity and binding properties of the receptors, implying that 
two individuals experiencing similar antigenic environments need not share common receptors through the 
convergent evolution of their repertoires [65].

Quantifying the functional diversity of the repertoire is arduous because it requires precise characteriza-
tion of cross-reactivity by mapping the sequence of receptors to their binding properties. The identification 
of TCRs that bind to specific antigens using tetramer experiments in mice [66] shows that a single antigen is 
bound by 20-200 out of 4 · 107 CD4+ T cells, i.e., a fraction 5 · 10–7–5 · 10–6 of the total population. Conversely, 
a single TCR can recognize many antigens. A lower bound of 106 has been reported for an autoimmune TCR 
from a human patient [67], but that number must be much larger (> 5 · 10–7 × 1015 = 5 · 108) so that the TCR 
repertoire may cover the entire set of possible peptides.

Assessing cross-reactivity in a more quantitative and systematic way requires to massively measure the bind-
ing properties of a huge numbers of receptor-antigens pairs. High-throughput mutational scans combining bind-
ing assays with next-generation sequencing technologies now make it possible to measure the binding properties 
of a single receptor against many peptides [68], or of many mutagenized receptors against a single antigen [69]. 
Integrating these measurements into predictive models of receptor-antigen binding would provide powerful 
tools for analyzing lymphocyte repertoires. The diversity of receptor sequences could then be augmented by the 
more relevant diversity of antigens that can be recognized by them, with varying potencies and frequencies.
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Antigen receptor diversification during immune 
responses
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12.1 � INTRODUCTION: IMMUNOGLOBULIN GENE 
DIVERSIFICATION DURING IMMUNE RESPONSES

Primary diversification of the TCR and BCR repertoire during T and B cell development is achieved via 
receptor variable region gene rearrangement. However, in contrast to T cells, B cells further diversify their 
receptors in germinal centers during immune responses (Victora and Mesin, 2014; Victora and Nussenzweig, 
2012). Heavy chain constant regions are functionally diversified via class switch recombination (CSR) (Xu, 
Zan, Pone, Mai, and Casali, 2012). Heavy and light chain variable regions undergo affinity maturation—a 
term which refers to the combined result of diversification by somatic hypermutation (and in some species 
also gene conversion) and antigen-driven selection (Corcoran and Tarlinton, 2016). Somatic hypermutation 
(SHM) is about a million times faster than normal somatic mutation and affects only the rearranged vari-
able region genes. Like CSR, SHM is initiated by the enzyme activation-induced cytidine deaminase (AID), 
but unlike CSR, SHM cannot occur in normal B cells in vitro, and affinity maturation requires T cell help at 
almost every stage and can only occur in vivo. Affinity maturation accounts for a large part of the diversity of 
memory B cell repertoires (Budeus et al., 2015).

The fact that most immunoglobulin variable region (IgV) genes sampled are heavily mutated poses, on 
one hand, a challenge that must be overcome when processing IgV gene sequencing data. On the other hand, 
many analysis methods based on identifying these mutations can yield very useful insights regarding B cell 
clonal dynamics and antigen-driven selection. This chapter reviews the problems and solutions posed by 
SHM, the SHM-based analysis methods and some insights gleaned from these analyses in our and some oth-
ers’ recent studies.
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12.2 � FIRST CHALLENGE: IgV GENE DATA PRE-PROCESSING 
AND ERROR CORRECTION

High throughput sequencing (HTS) enables the sequencing of genes from many samples simultaneously, 
yields more sequences per sample and is sensitive enough to identify different unique sequences, such as the 
mutated variants in the same B cell clone (Calis and Rosenberg, 2014; Robins, 2013). However, the software 
packages normally used for preprocessing of HTS data and mutation identification (reviewed in (Michaeli, 
Noga, Tabibian-Keissar, Barshack, and Mehr, 2012)) rely on being given a “reference” or “template” gene 
to which all sequences can be compared in order to identify sample molecular identification (MID) tags 
and primers and discard low-quality sequences. Such template genes do not exist for the somatically rear-
ranged and mutated IgV genes. Thus, the computational immunology community has had to develop its own 
data cleaning and preprocessing tools for TCR and BCR repertoire sequencing, a.k.a. immune-sequencing 
or REP-seq (see, e.g., (Marquet et al., 2014; Michaeli, Barak, Hazanov, Noga, and Mehr, 2013; Michaeli et al., 
2012; Moorhouse et al., 2014; Schaller et al., 2015; Vander Heiden et al., 2014)). We have developed Ig-HTS-
Cleaner (Ig High Throughput Sequencing Cleaner), a program containing a simple cleaning procedure 
that successfully deals with pre-processing of Ig sequences derived from HTS, and Ig-Indel-Identifier (Ig 
Insertion–Deletion Identifier), a program for identifying legitimate and artifact insertions and/or deletions 
(indels). Our programs were designed for analyzing Ig gene sequences obtained by 454 sequencing, but they 
are applicable to all types of sequences and sequencing platforms. Ig-HTS-Cleaner and Ig-Indel-Identifier 
have been implemented in Java and saved as executable JAR files, supported on Linux and MS Windows 
(Michaeli et al., 2012).

The PCR reaction itself is a source of many errors. Best et al. (Best, Oakes, Heather, Shawe-Taylor, and 
Chain, 2015) have shown that gene amplification by PCR introduces substantial product heterogeneity, inde-
pendent of primer sequence and bulk experimental conditions. This heterogeneity could be attributed both to 
inherited differences between different template DNA molecules, each of which may be randomly amplified 
to a different multiplicity, and to the inherent stochasticity of the PCR process. They concluded that PCR het-
erogeneity arises even when reaction and substrate conditions are kept as constant as possible and suggested 
that single molecule barcoding is essential in order to derive reproducible quantitative results from any proto-
col combining PCR with HTS. Single molecule barcoding is a method that uses unique molecular identifiers 
(UMIs; (Egorov et al., 2015; Kivioja et al., 2011; Turchaninova et al., 2016)), which are random strings of 10-15 
nucleotides inserted into the primers during primer synthesis. Thus, if two or more identical sequences pos-
sess the same UMI, this multiplicity can be assigned to random PCR amplification, while identical sequences 
with different UMIs correspond to different molecules in the original DNA aliquot. The UMI method can 
also help correct sequencer errors, as each sequencing method has its own error profile (see, e.g., (Best et al., 
2015; Loman et al., 2012)).

12.3 � SECOND CHALLENGE: ANNOTATING SEQUENCES 
AND ASSIGNING THEM INTO CLONES

Sequence annotation, in the case of Ig genes, involves identification of the V and J segments (sometimes also 
D, though this is never very reliable) and of the part of the sequence each is derived from. There are many tools 
for this task, which differ in the databases they reply on and the method used for gene segment identification 
(Gaeta et al., 2007; Lefranc, 2003; Russ, Ho, and Longo, 2015; Volpe, Cowell, and Kepler, 2006). As explained 
in Section 12.2, assigning sequences into clonally-related groups is also not trivial. It is usually based on V 
and J gene segment identity and CDR3 region similarity. However, due to SHM, no fixed cutoff of similarity 
is appropriate for BCR genes. Instead, clustering-based algorithms are often used (Chen, Collins, Wang, and 
Gata, 2010).
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12.4 � THIRD CHALLENGE: ESTIMATING CLONAL SIZES 
AND OVERALL REPERTOIRE DIVERSITY

In basic IgV repertoire studies, the SHM problem was sometimes ignored by taking only one representative 
of each clone. However, this ignores the potential to extract information and insights from clone sizes and the 
mutations themselves. Thus, computational tools were developed for identifying the mutations and distin-
guishing them from PCR and sequencing errors (reviewed in (Pabst, Hazanov, and Mehr, 2015)). If the sequenc-
ing is based on genomic DNA, then the use of UMIs (Egorov et al., 2015; Kivioja et al., 2011; Turchaninova et 
al., 2016) can also supply the clone size information; however, if the original material was RNA, which enables 
the identification of the constant region and hence the isotype, then there is no way to know how many RNA 
molecules per cell were included in the sequences material. In the latter case, plasma cells would be over-
represented relative to B cells in the resulting repertoire, unless the cells were pre-sorted according to subset.

12.5 � B CELL RECEPTOR REPERTOIRE STUDIES IN HEALTH 
AND DISEASE

Several recent reviews have focused on the contribution of B cell repertoire studies to our understanding of the 
humoral immune system in general and its activity in certain diseases in particular (Boyd and Crowe, 2016; Calis 
and Rosenberg, 2014; Finn and Crowe, 2013; Mathonet and Ullman, 2013). Under certain conditions, one may 
find a general change in a property of the whole repertoire, such as CDR3 length distributions (Gibson et al., 2009; 
Pickman, Dunn-Walters, and Mehr, 2013). Assuming that clonal sizes are reliable, one may also address questions 
regarding overall repertoire diversity. Repertoire diversity, measured using tools borrowed from ecology (e.g., 
(Michaeli et al., 2014)), is a very interesting property to follow. It decreases during an immune response, as the 
repertoire becomes more clonal, and returns to pre-response levels thereafter (Ademokun et al., 2011). The latter 
return is sometimes impaired with aging (Tabibian-Keissar et al., 2016) where there is also a general repertoire 
diversity increase over time in peripheral blood (Dunn-Walters, 2016) and lymph nodes (Tabibian-Keissar et al., 
2016), while surprisingly, the repertoires in the spleen show an opposite trend. Diversity may also decrease when 
a malignant clone takes over most of the space available for B cells, in which case it should return to higher levels 
after successful treatment (Warren, Matsen IV, and Chou, 2013). Finally, in certain immunodeficiencies, TCR 
and BCR repertoire diversity may also be reduced (Yu et al., 2014) or skewed (O’Connell et al., 2014).

More specific changes may occur in the frequencies of certain gene segments (Martin, Wu, Kipling, and 
Dunn-Walters, 2015) or even particular gene combinations (Michaeli et al., 2014). Over- or under-expression of 
particular gene segment combinations (relative to the expected based on the frequency of expression of each of 
the segments in the repertoire) may correspond to more than one clone using the same combination. Such cases 
are obviously common in responses to infections, e.g., with HIV (Hoehn et al., 2015), and in autoimmune or 
chronic inflammatory diseases (Hehle et al., 2015; Lomakin et al., 2014; Snir et al., 2015), as in both cases a limited 
number of antigenic epitopes may be driving the response. However, gene segment combinations over- or under-
expressed in, e.g., autoimmune diseases were also found in B cell malignancies (Michaeli et al., 2014), possibly 
hinting at the connection between chronic inflammation and the eventual development of B cell malignancy.

12.6 � SHM- AND LINEAGE TREE-BASED ANALYSIS METHODS�: 
LINEAGE TREES

Despite the difficulties posed by SHM, many insights can be gleaned from analyzing the resulting mutations. 
Sometimes the mere existence of mutations is informative, as in the case of B cell chronic lymphocytic leu-
kemia (B-CLL), where those patients with a mutated malignant clone have a better prognosis than those with 
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a non-mutated malignant clone (Volkheimer et al., 2007). However, in most cases the identities, frequencies 
and locations of the mutations must be characterized. We have developed many methods of analysis of SHM, 
all of which rely on first creating the clonal lineage tree, for which we have written the program IgTree (Barak, 
Zuckerman, Edelman, Unger, and Mehr, 2008); sample trees are shown in Figure 12.1. The root of the tree is 
constructed from the germline segments from which the rearranged gene is composed, and a clonal consensus 
in the junction regions. Figure 12.2 shows the main steps in lineage tree generation, starting from the raw data.

Tree-based mutation identification is more precise than the common practice of merely counting muta-
tions within groups of sequences, for the following reasons. First, there is no over-counting: if a mutation has 
occurred only once according to the deduced tree, it will only be counted once, even if it appears in many 
descendant sequences. Second, each mutation is identified relative to the nearest identifiable ancestor, and 
thus the nucleotide and amino acid changes are more precisely identified. Third, the IgTree algorithm can 
also identify reversion mutation, and fourth, it can deal with short gaps, assigning them to one mutational 
(insertion or deletion) event. Since the IgTree algorithm groups together identical sequences, but not if they 
came from different samples, it gives more precise information on clonal sizes. Thus, lineage tree analysis-
based BCR/Ab repertoire analysis and diversity analyses are also more precise.

In some cases, merely drawing the lineage trees is highly informative. The tree structure can point at con-
nections between sequences obtained from different tissues (Figure 12.3), isotypes or days of the response 
(Figure 12.4), different cell populations, and so on. Quantification of relationships between populations—as 
presented on the trees—is also possible (manuscript in preparation) and can be highly instructive.

Lineage trees also enable us to follow the history of the clone. One may express the receptors encoded 
by the sequences at each stage of diversification, thus directly following affinity maturation in antibodies of 
interest, as has been done for anti-HIV antibodies (e.g. Bonsignori et al., 2011). Alternatively, one may look at 
lineage trees from clones that were sampled more than once, and thus follow the dynamics—and even trans-
formation—of malignant B cell clones, and glean information about disease ontogeny and course, as has been 
done for follicular lymphoma ((Carlotti et al., 2015) and manuscript in preparation) (Figure 12.5).

Tree “root”
(consensus)

Mutation
location

Number of mutations

Deduced
intermediate
node(s)

Sequence name

Number of
identical
sequences

“Leaves”

1

18

21

22

35

137

172

5

90 62

1 1

4

7

14

G.L.

DL;F_4-4_28_2_ID132207_IgA1 DL;NF_4-4_28_2_VH1_ID122504_IgA1

Figure 12.1  Sample lineage trees. In all trees, nodes correspond to sequences and edges to mutations. In the tree 
on the left, G.L. indicates the pre-mutation sequence, composed of germline-encoded segments and rearrange-
ment junction nucleotides (tree “root”); the dashed ellipse indicates a sequence whose existence was deduced as 
a common ancestor to the sequences below it (tree “branching point”); and the two bottom ellipses (tree “leaves”) 
indicate sequences found in the experiments, each showing the sequence name. The numbers next to the edges 
indicate the numbers of mutations separating the corresponding nodes. The tree on the right shows each mutation 
as a separate edge, with the mutation’s location indicated next to it; since the order of mutations between tree root 
and the first branching point, or between two consecutive branching points, is always unknown, the mutations are 
ordered according to location on the sequence. The shaded nodes indicate sequences fund in the experiment, and 
the numbers within nodes indicate the numbers of separate sequences represented by the node.
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12.7 � SHM- AND LINEAGE TREE-BASED ANALYSIS METHODS: 
LEARNING FROM THE MUTATIONS

Since lineage tree-based mutation identification is more precise, it is best to analyze the mutations introduced by 
SHM based on the list of mutations in each tree. The type of nucleotide substitution inserted by SHM depends 
on the particular DNA repair path used by the cell to resolve the initial U-G lesion created by AID (reviewed in 
(Hazanov and Michaeli, 2014)). Once all the mutations in all sequences are identified, various statistics—such as 
the fraction of mutations from/to each nucleotide, or the transition and transversion fractions—can be calculated 
and compared between samples (Zuckerman et al., 2010), sometimes leading to new insights regarding SHM.

SHM-introduced point mutations occur mostly in well-known “hotspot” motifs, such as RGYW/WRCY. 
Understanding SHM targeting may be aided by studying these AID targeting motifs. Our program PictoIg© 
(Zuckerman et al., 2010) identifies and enumerates sequence motifs up to 10 or more nucleotides upstream 
and downstream of the mutated location, based on previous studies limited to shorter sequence motifs 
(Spencer and Dunn-Walters, 2005). The program outputs sequence logos, where over- or under-represented 
nucleotides are drawn above or below the x axis, with the letter size proportional to the relative representation 
of the nucleotide in the given position, with indication of whether this relative representation is significantly 
different from that expected under a random process.

We also sometimes analyze the N-glycosylation motifs in the amino acid sequences. These motifs are defined 
as Asn-X-Ser/Thr, where X is any amino acid except proline; aspartate and glutamate are also disfavored in the 
X-position. Such motifs may be part of the rearranged pre-mutation sequence or be added to the sequence by 
SHM. N-glycosylation motifs have been identified in various B cell lymphomas (Forconi et al., 2004; Zhu et al., 
2002a; Zhu et al., 2002b). We found (Hazanov, MSc thesis, Bar-Ilan University, 2010) that the number of existing 
glycosylation sites in the deduced pre-mutation heavy chain V gene sequences of the dominant clones of several 
lymphomas and in the deduced pre-mutation light chain V genes of Follicular Lymphoma were significantly 
higher than in normal controls. The number of new N-glycosylation motifs acquired through SHM was also 
significantly higher in lymphomas than in normal controls. The role of this increased N-glycosylation in lym-
phoma ontogeny and progression is so far unknown and would be interesting to elucidate.

The analysis of mutations, in particular when based on lineage tree structure, enables us also to address the 
question of which selection forces act on the diversifying B cell clones in a quantitative manner. Point mutations 
may be replacement (R) mutations, resulting in a change in the encoded amino acid or a silent (S) mutations, 
also called synonymous mutations as they do not lead to amino acid changes. Theoretically, a random mutation 
process in the absence of any selection would bring about an even distribution of R and S mutations throughout 
the diversifying gene. Out of 526 possible single base changes in the 61 codons of the 20 amino acids, ignoring 
stop codons, 392 produce R mutations and 134 are S mutations, leading to an expected ratio of R:S=2.925 (Jukes 
and King, 1979). This estimate is based on codon tables alone, ignoring the concept of “hot spots” and the fact 
that some codons are more “mutable”, that is, susceptible to mutation, than others for the same amino acid. It has 
been taken to mean that a higher (lower) ratio than 2.925 indicates selection for (against) replacement mutations. 
An elaboration of this idea, using a binomial test to show where fractions of R mutations were significantly higher 
or lower than what is expected from random mutations under no selection, was presented in (Chang and Casali, 
1994) and later improved by replacing the binomial by a multinomial model for the probability of excess or scar-
city of R mutations in the complementarity determining regions (CDRs) or framework regions (FRs) of the vari-
able region gene (Lossos, Tibshirani, Narasimhan, and Levy, 2000). All the above models, however, yield many 
false positives (Bose and Sinha, 2005; Dunn-Walters and Spencer, 1998). This and other issues were corrected by 
the “focused” binomial test (Hershberg, Uduman, Shlomchik, and Kleinstein, 2008; Uduman et al., 2011).

12.8 � CURRENT LIMITATIONS AND FUTURE DIRECTIONS

While the study of Ig gene diversification and repertoires, as reviewed above, has been explosively acceler-
ated in the last decade, much work is still needed in order to reach a fully standardized, automated analysis 
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pipeline. It is still not easy to compare results of studies using the different analysis tools currently available 
in the BCR repertoire research community. The number of groups developing mutation analysis tools, in 
particular lineage-tree based ones, is even smaller. We are, however, confident that both experimental and 
computational method standards will emerge in the next few years. While efforts towards standardization are 
under way (see, e.g., http://airr.irmacs.sfu.ca/ ), the number of researchers and clinicians embarking on HTS 
studies of B cell repertoires is steadily growing. Deeper sequencing technologies may, in the future, enable 
the rapid reconstruction of any individual’s genomic Ig gene segment library (Zehnder et al., 2010), thus pav-
ing the way to studies of the association between certain Ig gene segments of combinations and various dis-
eases. Another application of deep REP-seq is the follow-up of T or B cell lymphoma clones during and after 
therapy, which—if standardized and made available for clinical use—would enable much earlier detection of 
relapses than the currently used standard blood tests. The number of studies of TCR and BCR repertoires and 
B cell lineages in infectious diseases, immunodeficiencies, chronic inflammatory and autoimmune diseases, 
and ageing is likely to continue growing rapidly in the foreseeable future, yielding unprecedented insights 
into the course of such diseases and suggesting avenues for therapy.
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Quantitative modeling of mast cell signaling

LILY A. CHYLEK, DAVID A. HOLOWKA, BARBARA A. BAIRD, 
AND WILLIAM S. HLAVACEK

13.1 � INTRODUCTION

Cells exist in environments that necessitate responses. Growth, death, movement, and other fundamental 
acts are all influenced by decisions made on the basis of environmental cues. Decision-making is mediated by 
cell signaling systems, which translate inputs into outputs through networks of interacting proteins, lipids, 
and other biomolecules.

A signaling process begins when a cell surface receptor interacts with an extracellular ligand and under-
goes a change detectable within the cell. Two common examples of such changes are oligomerization and 
conformational alterations. From the receptor, multitudinous biochemical events can emanate. These events, 
which include catalysis of post-translation modifications and formation of multi-protein complexes, can cul-
minate in consequences such as migration, secretion, and changes in gene expression.

To understand how cells make decisions, and to potentially predict and manipulate these decisions, we need to 
understand the process by which a signaling system translates inputs to outputs. We can uncover the pieces of this 
puzzle through experimental measurements, such as western blots revealing dynamics of protein phosphorylation 
or a microscopy image revealing locations of biomolecules. To integrate these puzzle pieces into a picture of the 
cell’s inner workings, we need to assemble a model: a representation summarizing how we think the system works.

13.2 � MODELS IN CELL BIOLOGY

Models are ubiquitous in biology. They often take the form of maps that show proteins connected by arrows 
that represent various types of influences or interactions. The value of these diagrams is that they provide a 
visual overview that can be comprehended more readily than a textual description of the system’s components 
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and connections. However, our ability to enumerate and illustrate such connections tends to outstrip our 
ability to predict the outcomes that those interactions lead to, especially when trying to account for the quan-
titative factors that are inherent to signaling systems, such as the number of copies of a protein, the affinity 
of an interaction, or relative competition among binding partners. Another compounding factor is the intri-
cacy of the “wiring” itself: cell signaling systems are rife with feedback and feed-forward loops (Alon, 2007), 
cross-talk (Guo and Wang, 2009), and redundancies (Sun and Bernards, 2014). These factors contribute to 
a variety of behaviors that seem at first perplexing: hysteresis (Das et al., 2009), oscillations (Wollman and 
Meyer, 2012), and desensitization (Weetall et al., 1993). It can be difficult to develop an intuition about these 
phenomena. A strategy to extend our reasoning capabilities about these complex and quantitative systems 
is to make our maps executable: to represent biomolecular interactions in a way that enables a computer to 
simulate them.

A spectrum of approaches has been used to model aspects of cell signaling, from molecular dynamics 
simulations of molecular movements on the sub-nanosecond timescale (Karplus and McCammon, 2002) to 
Boolean networks representing a coarse-grained view of the overall network (Albert and Thakar, 2014). Here, 
we will focus on models based on chemical kinetics (Aldridge et al., 2006) because they combine features that 
are especially relevant for studying cell signaling in a combined modeling-experimental framework: 1) these 
models take into account laws of physics and chemistry that govern molecular interactions, 2) they have the 
potential to encompass a large set of proteins, and 3) they can be used to simulate timescales from seconds 
to minutes to hours, which are timescales on which experimental measurements are commonly performed. 
We will focus on IgE receptor signaling, which is of special interest because it has been modeled from ligand-
receptor binding up to second messenger generation and because the role of aggregation in initiation of 
signaling is relatively well-understood.

13.3 � QUANTITATIVE ANALYSIS OF IgE RECEPTOR SIGNALING

One of the earliest signaling systems to be investigated through mathematical modeling and quantitative 
experiments is signaling via the high-affinity receptor for IgE, also known as FcεRI (Dembo and Goldstein, 
1978). This multi-subunit receptor is found on the surface of mast cells and basophils. Stimulation of this 
receptor can lead to release of histamine and other mediators that are involved in the allergic immune 
response (Kraft and Kinet, 2007). Additionally, IgE receptor signaling is similar to signaling by other antigen 
recognition receptors, so studying this system has relevance for general understanding of immunity beyond 
allergies.

FcεRI forms a stable, one-to-one complex with an IgE antibody (McDonnell et al., 2001), which is specific 
to a particular antigen. IgE is bivalent for antigen binding, meaning that its two Fab arms can each bind to 
a separate antigen site. Antigens that are multivalent are capable of cross-linking multiple receptors and 
forming receptor aggregates. These aggregates can initiate signaling by allowing kinases co-localized with 
clustered receptors to phosphorylate neighboring receptors. The resulting signaling cascade, including influx 
of extracellular Ca2+, leads to release of pre-formed inflammatory mediators in a process called degranulation 
(Figure 13.1). Aggregation is the mode of signal initiation used by other immunoreceptors, as well as a process 
found at various stages of diverse signaling systems. For example, aggregation of the adaptor protein LAT, for 
which mathematical models have been developed (Chylek et al., 2014d), is an aspect of T-cell receptor (TCR) 
signaling (Balagopalan et al., 2015). The parallels between FcεRI and other signaling systems make it a useful 
model system.

The mast cell system offers an unusual level of experimental tractability. One reason is that the antigen the 
cells will respond to is determined by the specificity of the IgE antibodies that are bound to cell-surface FcεRI. 
Exposing cells to different IgEs, separately or in combination, results in cells that are responsive to different 
(combinations of) stimuli.

Additionally, a variety of synthetic antigens can be constructed by attaching small molecules recognized 
by antibodies, called haptens, to polymer scaffolds; these ligands can then bind to hapten-specific IgE. This 
feature has been leveraged to study a wide range of structurally distinct ligands, which give rise to a variety 
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of responses. One of the most commonly used ligands is DNP-BSA, which is a bovine serum albumin (BSA) 
molecule conjugated to multiple 2,4-dinitrophenyl (DNP) haptens. This ligand stimulates robust signaling 
and degranulation, but a drawback is that it is chemically heterogeneous; different DNP-BSA molecules may 
bear different numbers of DNP groups, and two molecules with the same number of DNP groups may have 
them conjugated to different lysine residues of the protein. Thus, the mechanisms of ligand-receptor interac-
tions are difficult to deconvolute. More controlled ligands have been constructed and used to shed light on 
what qualities of a ligand influence the signaling response.

Valency has been found to be an important factor. Monovalent ligands, such as DNP-lysine and DNP-
aminocaproyl-l-tyrosine (DCT) fail to stimulate signaling because they do not enable formation of receptor 
aggregates. Nevertheless, monovalent ligands are a useful tool for studying inhibition of signals triggered 
by multivalent ligands, because an excess of monovalent ligand is capable of breaking up aggregates 
(Subramanian et al., 1996), leading to downregulation of signaling.

Most bivalent ligands generate minimal degranulation (Paar et al., 2002), suggesting that the kind of 
aggregates that they form do not stimulate sufficient signaling within the cell. However, it is worth noting that 
some bivalent antibodies that bind to FcεRI directly do stimulate signaling (Ortega et al., 1988), suggesting 
that the steric constraints and/or binding properties of different ligands may have a deciding effect.

Multivalent
antigen

IgE

FcεRI

Degranulation

Ca2+

Ca2+

Ca2+

PIP2 DAG + IP3

IP3R

PLCγ1 P
P

LAT
Syk

Lyn

Figure 13.1  An illustration of molecules involved in initiation of IgE receptor signaling. A one-to-one complex 
is formed between FcεRI and an IgE antibody. Each of the IgE’s two Fab arms is capable of interacting with an 
antigen. A multivalent antigen is able to cross-link (aggregate) two or more IgE-receptor complexes. These 
receptor aggregates can then undergo phosphorylation by the kinase Lyn, which is tethered to the membrane 
via palmitoylation and myristolation. Lyn associates with receptors via its intrinsically disordered unique domain 
and/or through colocalization in lipid rafts (Holowka et al., 2005, Young et al., 2003). Lyn phosphorylates the 
receptor at several residues in its cytoplasmic subunits, each of which contains an immunoreceptor tyrosine-
based activation motif (ITAM). An ITAM contains two tyrosine residues that can be phosphorylated. The beta 
subunit ITAM contains an atypical third tyrosine. The N-terminal tyrosine in the beta ITAM, when phosphory-
lated, can associate with the SH2 domain of Lyn. The pair of disulfide-linked gamma subunits each contain one 
ITAM that, when doubly phosphorylated, can associate with the tandem Src homology 2 (SH2) domains of the 
kinase Syk. Syk can then proceed to phosphorylate an array of downstream targets, including the adaptor Lat, 
which can then bind to phospholipase Cγ1 (Plcg1). Plcg1 cleaves the phospholipid PIP2, yielding diacylglycerol 
(DAG) and inositol trisphosphate (IP3). Interactions of IP3 with the IP3 receptor on the endoplasmic reticulum 
leads to calcium mobilization. Store-operated calcium entry (SOCE) enables influx of extracellular calcium into 
the cytoplasm. These events enable release of inflammatory mediators through degranulation.
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Trivalent ligands tend to stimulate a more robust range of cellular responses. A set of trivalent ligands 
built on a rigid double-stranded DNA scaffold revealed that the longer the length of the scaffold, the weaker 
the resulting degranulation and phosphorylation of most, but not all, signaling proteins, including the recep-
tor itself and the adaptor protein Lat (Sil et al., 2007). Degranulation decreased with ligand length, as did 
stimulated Ca2+ mobilization, but in a less drastic manner. These results support the concept of transphos-
phorylation by receptor-associated kinases being important to early signaling, with larger distances between 
receptors reducing the efficiency of transphosphorylation. These results also point to the existence of diverg-
ing pathways that enable some signaling components to be more independent of receptor phosphorylation 
than others.

Other trivalent DNP ligands include one built on a polyethylene glycol scaffold (Posner et al., 2007) and 
one consisting of a trimeric fibritin foldon domain bound to DNP (Mahajan et al., 2014). The range of ligands 
available for manipulating clustering of IgE-FcεRI complexes has enabled a controlled analysis of the intra-
cellular information-processing system that connects inputs to outputs, and many of these analyses have 
included modeling.

13.4 � CHEMICAL KINETIC MODELS OF IgE RECEPTOR SIGNALING

Most early modeling studies of this system focused on a prerequisite for receptor-mediated signaling: ligand-
receptor binding. Models for the kinetics of the system took the form of ordinary differential equations 
(ODEs) that represented the changing concentrations of chemical species in the model, which were con-
trolled by the processes of ligand capture, receptor crosslinking, and cyclization to form rings (Posner et al., 
1991, Posner et al., 1995, Subramanian et al., 1996, Xu et al., 1998, Das et al., 2008). Equilibrium models in 
the form of algebraic expressions were also developed. Some of these models were fit to binding data, which 
often took the form of fluorescence measurements (Erickson et al., 1986). The fluorescence of IgE labeled 
with fluorescein isothiocyanate (FITC) is reduced in the presence of the hapten DNP. Thus, measurements of 
FITC fluorescence quenching can be translated to a quantity of IgE sites bound. Additionally, in some stud-
ies ligands were also fluorescently labeled and the amount of ligand bound to IgE was quantified, providing 
additional data for parameter estimation (Xu et al., 1998, Hlavacek et al., 1999). These combined modeling 
and experimental studies were used to postulate mechanisms and estimate rate constants involved in ligand-
receptor binding.

These studies of events on the cell surface provided a starting point for investigations into what occurs 
inside the cell. In 1997, IgE receptor signaling became the subject of an early modeling study of intracellular 
signaling in a mammalian system (Wofsy et al., 1997) (Figure 13.2). Going beyond ligand-receptor interactions, 
this model was used to investigate the relationship between receptor aggregation, receptor phosphorylation, 
and association of aggregates with the kinase Lyn. The ligand considered in this model and the associated 
experiments was a covalently cross-linked dimer of IgE that can bind to a pair of receptors. Phosphorylation 
sites in the receptor were simplified to a single site. Such simplifications may or may not be appropriate and 
in general should be carefully evaluated (Chylek, 2013). Parameters for the model were obtained through a 
combination of published estimates and values obtained through fitting to experimental data. The model was 
used to make predictions about how Lyn is redistributed as receptor aggregates form. A conclusion of this 
study was that late-forming aggregates are less likely to contain Lyn than early-forming aggregates. However, 
the model also predicted that under some conditions, late-forming aggregates can recruit Lyn away from 
aggregates formed earlier. This prediction was confirmed experimentally, an example of how a model can 
help make a prediction that would be difficult to arrive at otherwise (Wofsy et al., 1997).

The next step in model development was addition of another kinase, Syk. However, this step required a 
rethinking of methodology. Recall that kinetic models for cell signaling systems tend to be built by writ-
ing ODEs, as in the seminal study of Kholodenko et al. (1999) of signaling by the epidermal growth factor 
receptor (EGFR). With this approach, an ODE must be written for every chemical species that is potentially 
populated in the system being modeled. As the number of interactions grows, the number of potentially 
populated species can explode. A model that included recruitment and activation of Syk entailed 354 distinct 
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species (Faeder et al., 2003). Despite its large size from the perspective of equations, from the perspective of 
molecules the model only contained four signaling molecules (a ligand, the receptor, Lyn, and Syk) out of the 
many that are known to be involved in mast cell signaling. It was apparent that continued progress in model 
development would necessitate a new approach to how we think about models.

13.5 � THE ADVENT OF RULE-BASED MODELING

So far, models have been built on the notion of reactions, where each reaction describes the behavior of a 
very specific set of chemical species. The number of reactions can be reduced by making them less specific 
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Figure 13.2  A subset of the reactions included in the model of Wofsy et al. (1997). These reactions represent 
interactions between a receptor dimer, crosslinked by a covalently-linked dimer of IgE, and Lyn kinase. Lyn 
can interact with an unphosphorylated receptor via its unique domain. Lyn can interact with a phosphorylated 
receptor via its SH2 domain. In this model, receptor phosphorylation sites are lumped together as one single 
phosphorylation site. This model does not explicitly include phosphatases. Phosphatase activity is implied in 
the rapid dephosphorylation of receptors that are not bound to Lyn. In addition to the reactions shown here, 
the model also contains reactions for binding between receptor and ligand (the IgE dimer).
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(more general), and thus less numerous. A way to do this is to describe a generalized reaction, called a rule, and 
to task a computer with enumerating the specific reactions (Chylek et al., 2014b; Chylek et al., 2015). A rule 
describes the necessary and sufficient conditions required for an interaction to occur. For example, a rule may 
state that for Lyn to bind a phosphorylated site in the receptor, Lyn must have an unbound SH2 domain and 
the phosphorylated site in the receptor must also be unbound. Any other molecular details that are assumed 
or known to not influence the interaction, such as phosphorylation and occupancy of other receptor sites, are 
omitted from the rule. A rule is a generalized representation of a reaction that could occur in many different 
instances that vary in their nonessential molecular details.

The specific, potentially numerous reactions implied by a set of rules can be enumerated by a program that 
processes the rules. From this point, ODEs can be derived from the list of reactions for numerical integra-
tion, or the reactions can be used as event generators in a stochastic simulation based on Gillespie’s method 
(Gillespie, 2007). In this way, a signaling network can be represented, by the human modeler, using a rela-
tively compact set of rules and the drudgery of translating those rules into reactions is performed by a com-
puter program (Faeder et al., 2009).

Several languages and software packages have been developed to aid rule-based modeling. One of the most 
commonly used is BioNetGen. We will focus on BioNetGen, which enables both stochastic and deterministic 
simulations. In BioNetGen’s modeling language, called BNGL, the connectivity of molecules of interest are 
represented essentially as graphs, along with their relevant internal components, which can include domains, 
motifs, and amino acid residues. If desired, components can have multiple possible states representing com-
ponent properties such as location, post-translational modification status, conformation, or other variables.

For example, the text “Syk(tSH2,Y519~0~P)” is a string-based encoding of a graphical representation 
of the kinase Syk, which is taken here to contain a tandem pair of SH2 domains called tSH2 and a tyrosine 
called Y519. The text indicates that this tyrosine can either be unphosphorylated (0) or phosphorylated (P). 
An example of a rule is:

Syk(tSH2) + FcR(gITAM~PP) -> Syk(tSH2!1).FcR(gITAM~PP!1) k1

This rule states that the tSH2 domain in Syk can bind to a (doubly) phosphorylated ITAM in the gamma 
subunit of the IgE receptor. The bonded components are labeled with “!1”. We are assuming that the phos-
phorylation state of the tyrosine in Syk, Y519, has no bearing on this interaction, and thus it is omitted from 
the rule. Reactions enumerated from this rule would include a reaction where Y519 in Syk is phosphorylated, 
and one where it is not phosphorylated. Both reactions would proceed with the same rate constant, k1. If we 
had reason to expect that the phosphorylation status of Y519 in Syk would affect binding of its tSH2 domain, 
which is true of some tyrosine residues in this kinase (Grädler et al., 2013), the rule could be modified to 
include its phosphorylation state.

The 2003 model for IgE receptor signaling that was developed using rule-based methods revealed the 
effects of kinase copy numbers, dephosphorylation kinetics, and how the beta subunit of the receptor can act 
as either an amplifier or inhibitor (Faeder et al., 2003).

13.6 � REPRESENTING A SIMPLE REACTION NETWORK 
WITH RULES, REACTIONS, AND EQUATIONS

To illustrate how ODE-based and rule-based models represent the same chemical kinetics, we will go over a 
simple example toy model for IgE receptor signaling. We will assume that the IgE receptor has two binding 
sites, located in its beta and gamma subunits, for associating with the kinases Lyn and Syk, respectively, and 
that interactions with each kinase occurs independently of the other. We will consider the process by which 
the receptor becomes associated with both kinases.

The receptor (R) may first bind to Lyn (L), forming complex CL, or it may first bind to Syk (S) forming 
complex CS. From there, a final complex is formed when CL binds to Syk or when CS binds to Lyn. These com-
plexes are illustrated in Figure 13.3a. This set of interactions implies four reactions, illustrated in Figure 13.3b. 
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Each reaction is associated with a forward and reverse rate constant. We assume that the rate constant of Lyn 
or Syk binding is identical for when the other kinase is already bound to the receptor. Figure 13.3c organizes 
these reactions into a network that illustrates the receptor transitioning from fully unbound to fully bound.

From the reactions of Figure 13.3c, we can obtain the ODEs presented in Figure 13.3d. The variables 
x1, x2, x3, x4, x5, and x6 represent the concentrations of the species R, L, S, CL, CR, and CLS, respectively. The 
equations describe the change in concentration of each of these species over time. The equations are found 
by considering which reactions either contribute to the formation or consumption of the species in question. 
For example, CL is formed by binding of Lyn to the receptor, and consumed by dissociation of Lyn from the 
receptor (leaving L and R), as well as by binding of Syk (forming the next species, CLS). We obtain terms in the 
equation by multiplying the rate constant by the concentration(s) of species involved in the reaction. The sum 
of these terms makes up the complete ODE. There are six ODEs in total.

In Figure 13.3e, we show the same process represented by rules. In each rule, we list the reaction centers 
in each molecule, that is, the part of the molecule that is involved in the interaction. For binding of Lyn to 
the receptor, the reaction centers are the phosphorylated beta subunit of the receptor (b~P) and the Lyn SH2 
domain. For binding of Syk to the receptor, the reaction centers are the phosphorylated gamma subunit of 
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Figure 13.3  A comparison of representations of a chemical reaction network. (a) The receptor (R) can bind 
to Lyn (L) and to Syk (S). A complex of the receptor with Lyn only, the receptor with Syk only, and the receptor 
with both Lyn and Syk are named RL, RS, and RLS respectively. (b) The list of reactions describing the binding 
processes of panel a. CL is a complex of the receptor and Lyn only. CS is a complex of the receptor and Syk 
only. CLS is a complex of the receptor, Lyn, and Syk. (c) The reactions in this system form a reaction network. 
In the reaction scheme shown, vertices are receptor complexes, and the arrows between them represent the 
chemical reactions that account for formation or destruction of each species. Each reaction is associated with 
a rate constant. (d) The ordinary differential equations (ODEs) derived from the chemical reaction network. The 
variables x1, x2, x3, x4, x5, and x6 represent the concentrations of the species R, L, S, CL, CS, and CLS respectively. 
These equations describe the changes of each species’ concentration, as determined by reaction rates, over 
time. (e) The rules representing an equivalent set of reactions. These rules can be processed by rule-based 
modeling software to yield the reactions and equations shown in other panels of this figure, or used directly to 
advance the state of a system if one is using network-free simulation techniques (described later).
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the receptor (g~P) and the Syk SH2 domain. Because we assume that the other kinase does not affect the rate 
of the interaction, it is omitted from the rule. The first rule encompasses reactions 1 and 3 in Figure 13.3b, 
whereas the second rule encompasses reactions 2 and 4 in Figure 13.3b.

It is important to emphasize that this toy model is simplistic in multiple respects. One simplification is 
that the receptor is taken to be permanently in a phosphorylated state. To illustrate how the two modeling 
approaches fare when model extension is pursued, we will consider what happens when we include the recep-
tor switching from an unphosphorylated to phosphorylated state.

In the reaction network, we would need to introduce an entirely new set of species to account for a recep-
tor that is completely unphosphorylated, phosphorylated only at the beta chain, phosphorylated only at the 
gamma chain, and phosphorylated at both. (Each chain contains multiple tyrosine residues, but as a simplifi-
cation we are lumping all of the sites in a given chain as a single site of phosphorylation.) We would then have 
to consider two versions of each of the receptor-kinase complexes, differing based on receptor phosphoryla-
tion state. We would also have to account for phosphorylation of a receptor site when the other site is phos-
phorylated and bound. The 12 reactions are shown in Figure 13.4a. There are a total of 10 distinct chemical 
species, and an equation would need to be written for each one.

In contrast, in the rule-based model we would only need to add two more rules, each describing the inde-
pendent phosphorylation of one receptor site (Figure 13.4b). These rules can be combined with the rules of 
Figure 13.3e, without having to edit the original rules. From this example it can be seen that expanding the 
rule-based model to account for more details will be a faster (and less error-prone) task than writing the reac-
tions and equations by hand.

13.7  TOWARDS COMPREHENSIVENESS AND MODULARITY

As our knowledge of signaling proteins grows, we want to develop models that encompass more molecu-
lar players, especially when we have ever-increasing ways to probe and quantify cellular behaviors. For 
example, mass spectrometry (MS) has made it possible to track phosphorylation states of hundreds to 
thousands of specific protein sites simultaneously (Cox and Mann, 2011). Super-resolution microscopy has 
revealed detailed pictures of how molecules spatially organize themselves within the cell (Shelby et al., 2013). 
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Figure 13.4 An extension to the model of Figure 13.3. (a) This panel shows the chemical reactions that would 
need to be written if one were to add a simple mechanism whereby receptors are phosphorylated via a first-
order reaction. The species R00, RP0, RP0, and RPP represent, respectively, the receptor in an unphosphory-
lated form, phosphorylated at beta only, phosphorylated at gamma only, and phosphorylated at both sites. 
The same nomenclature extends to the complex species (C0P, CP0, and CPP). To turn these reactions into a 
system of ODEs, the equations of Figure 13.3d would have to be modified, and new equations would need to 
be written to account for the new species. (b) In contrast, only two additional rules would need to be added 
to the rules of Figure 13.3e for the model to be expanded. The original rules would not need to be modified.



13.7  Towards comprehensiveness and modularity  221

Microfludic  evices make it possible to implement complex time-varying inputs and to monitor what cells do 
in response (Cheong et al., 2009). To remain relevant, modeling techniques have needed to advance to keep 
up with the array of directions in which experimental data are expanding.

One of these advances has been the development of new simulation techniques. Although generating reac-
tions from a rule set is feasible for many models, for some models the number of possible reactions is too large 
for even this process to be manageable. In some cases, it is the result of the model including many different 
proteins in the signaling network. In other cases, there may be only a few different types of proteins that can, 
however, combine with each other in seemingly endless configurations. An example of such a situation is the 
problem of a bivalent receptor (e.g., the FcεRI-IgE complex) and a trivalent ligand (e.g., one of the several 
trivalent ligands described above). The branching aggregates that may arise in this scenario are too numerous 
to be enumerated (Yang et al., 2008, Monine et al., 2010), but as described above, it is a biologically relevant 
process and thus something that we would like to be able to simulate.

A solution to this problem came in the mid 2000’s with the development of network-free simulation meth-
ods (Danos et al., 2007, Yang et al., 2008). As the name suggests, this method bypasses the step of generating 
a chemical reaction network by using the rules themselves as event generators in a stochastic simulation 
protocol based on kinetic Monte Carlo (Voter, 2007). Roughly, the rates of rules are calculated based on the 
properties of individually tracked sites in a model, and a waiting time is determined. A rule is selected for 
execution, reactive sites are selected, the system state is updated (through site state changes consistent with 
the selected rule), and time is incremented. Several variants of this algorithm exist and are encoded in the 
general-purpose software tools DYNSTOC (Colvin et al., 2009), RuleMonkey (Colvin et al., 2010), NFsim 
(Sneddon et al., 2011), and KaSim (http://www.kappalanguage.org/).

Taking advantage of network-free simulation, large models have been built and analyzed. An example is 
a large model for TCR signaling that, like FcεRI, is a multi-subunit immunoreceptor. The model was fit to 
MS-based time-resolved measurements of phosphorylation at specific protein sites that characterize signal-
ing during the first 60 s of TCR stimulation, yielding an unprecedented number of matched simulation and 
experimental time courses, and the model was also found to be predictive (Chylek et al., 2014a). Another 
example of a large model is one for early events in EGFR signaling (Stites et al., 2015), which was also used 
to analyze proteomic datasets characterizing protein copy numbers in particular cell lines and affinities of 
protein-protein interactions. Recently developed fitting software (Thomas et al., 2016) will facilitate further 
efforts to optimize parameter values of large models so that these models are consistent with high-throughput 
experimental measurements.

In parallel with construction of these models, rigorous methods for model visualization and annotation 
were developed to handle the issue of how we can represent what a model contains and where the information 
comes from (Chylek et al., 2011). These methods include visualization of models as extended contact maps 
and their annotation with model guides. Model guides may take the form of a wiki (Creamer et al., 2012), 
pointing the way towards community-driven modeling efforts where new models can be built upon the old.

Recently, we used these visualization, simulation, and annotation techniques to develop a large model 
for IgE receptor signaling that also serves as a library from which more specialized models can be obtained 
(Chylek et al., 2014c). This model incorporates many features of IgE receptor signaling that had previously 
been part of separate signaling models. It also includes proteins and interactions that had not been considered 
in models before. A subset of components from this library was used to develop a model addressing a ques-
tion raised in one of the differential ligand response studies discussed above (Sil et al., 2007): namely, why do 
some responses depend heavily on upstream phosphorylation whereas others do not? The model predicted 
that bistability in lipid synthesis, resulting from positive feedback loops, may be a factor. A model lack-
ing positive feedback predicted that when phosphorylation of the adaptor Lat was reduced, all downstream 
outputs would be reduced to an equal or greater extent. In contrast, a model including a positive feedback 
loop involving the adaptor protein Gab2 and the lipid kinase phosphoinositide-3 kinase (PI3K) predicted 
that under some conditions, a subset of downstream outputs would be buffered from reductions in upstream 
phosphorylation. These results provide a possible explanation for why ligands that induce different levels of 
receptor phosphorylation can induce similar levels of some downstream phosphorylation targets: as long 
as upstream phosphorylation exceeds a minimum level, positive feedback can sustain robust activation of 

http://www.kappalanguage.org
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certain downstream pathways. These predictions are experimentally testable by, for example, disrupting the 
feedback loop through a knockdown or knockout of one of its components.

13.8 � CONSIDERATIONS ON HOW A MODEL IS BUILT

A rule essentially states three pieces of information: (1) which molecules are interacting, (2) which sites are 
directly affected by the interaction (by becoming bound, unbound, or otherwise modified), and (3) which 
sites are not directly affected by the interaction but exert an influence on the interaction.

To explore what is meant by each piece of information, let us return to the example of Syk interacting with 
FcεRI, and model it in more detail by considering the two SH2 domains separately. We can write a rule stating 
that the N-terminal SH2 domain of Syk binds to the C-terminal tyrosine in the gamma ITAM of FcεRI, and 
that this interaction proceeds with a forward rate constant, k:

Syk(nSH2) + Rec(g_Y2) -> Syk(nSH2!1).Rec(g_Y2!1) k

We can also specify that the kinetics of the interaction are affected by whether the other SH2 domain of 
Syk is already bound to the receptor:

Syk(nSH2,cSH2) + Rec(g_Y2) -> Syk(nSH2!1,cSH2).Rec(g_Y2!1) k1
Syk(nSH2,cSH2!1) + Rec(g_Y1!1,g_Y2) -> Syk(nSH2!2,cSH2!1).Rec(g_Y1!1,g_Y2!2) k2

The first rule states that the C-terminal SH2 domain of Syk is unbound. The second rule states that this 
C-terminal SH2 domain is already bound to the receptor. The forward rate constant for this second rule, 
k2, will be larger than k1 because Syk is already tethered to the receptor, increasing the likelihood that the 
N-terminal SH2 domain will encounter its binding partner.

The primary literature is rich in information about biomolecular interactions. Many models are based on 
rules gleaned from potentially hundreds of individual studies of investigators who characterized signaling 
systems, one interaction at a time. These types of studies have been carried out using biochemical techniques 
such as immunoprecipitation (Markham et al., 2007) or more biophysical techniques like Förster resonance 
energy transfer (FRET) (Piston and Kremers, 2007). Other studies have used more high-throughput tech-
niques, such as MS-based proteomics or protein microarrays, to identify a large number of interaction part-
ners simultaneously (Hause et al., 2012). One consideration to keep in mind is to what extent different studies 
were performed under different conditions and whether this affects the compatibility of different data sets.

The specific sites involved in interactions have been uncovered by implementing mutations (e.g., mutat-
ing a particular tyrosine to a phenylalanine and determining whether a certain interaction is affected by 
the change). Some experiments have also shed light on what protein components, beyond the ones that are 
directly interacting, can influence the interaction. When this type of contextual information is available, it is 
usually a good idea to make a rule more specific by including it.

Once a rule is formulated, parameters, which can come from many different sources, must be supplied. 
The parameters for some specific interactions have been quantified through experimental studies. Sometimes 
these studies identify both forward and reverse rate constants, whereas others only identify the ratio of the 
two (in the form of an affinity or dissociation constant); this latter type of measurement is still useful because 
it constrains our estimates of rate constants.

Other interactions have not been studied at the level of affinities and rate constants, but measurements 
for analogous interactions can sometimes suggest a typical value. In cases where a specific value has not 
been determined, fitting (i.e., the optimization of parameter values to achieve simulated behavior matching 
experimental data) is useful. A general-purpose fitting tool compatible with software for rule-based model-
ing has recently been developed (Thomas et al., 2016). This tool implements a genetic algorithm that makes it 
possible to optimize multiple parameters simultaneously while also leveraging parallel computing resources.

As a modeler learns more about protein interactions and writes more rules, the model grows, and the 
eventual scope of a model must be defined. By scope, we mean how much of a network’s proteins, protein 
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components, and interactions should be included in a model. The answer is determined by the question that 
the model is being formulated to address. For example, if the goal is to develop a model that reproduces a 
defined set of experimental time courses of phosphorylation, the proteins containing phosphosites that were 
measured should be the focus of the model, along with any players needed to fill out the connections between 
them. In other cases, the scope might not be so clearly defined at first. For example, one might need to develop 
a model with the goal of reproducing a certain overall cellular behavior (e.g., desensitization) that could result 
from the confluence of multiple biochemical pathways (e.g., various positive and negative signals). There is no 
clear-cut procedure for deciding what to include in such a model, but the trial-and-error process of discov-
ering which components of a network are needed to produce a specific behavior can be an informative and 
surprising undertaking in itself.

Although the literature contains a great deal of information about interaction networks, it doesn’t spell 
out the answer to every question. Sometimes, possibilities that are not emphasized or even explored in indi-
vidual studies can actually be significant when the system is regarded as a whole. The modeler’s starting point 
is to take information that is already known, to turn it into an executable form, and to determine whether it 
forms a coherent picture or whether there are gaps that need to be filled.

How do we know when gaps exist? We begin by trying to ground a model in reality by comparing it to 
relevant experimental data and working towards agreement between the two (by including various known 
network components and exploring reasonable parameter values). The presence of gaps is suggested when a 
model seems like it should be able to match an experimental data set, but it cannot. Discrepancies between 
model and data are often the start of something interesting, because they indicate that some factor (in 
the model, experiments, or both) has not been considered.

Sometimes, to fill these gaps we need to propose new interactions that have not been reported before. At 
other times, we need to look at available information in a different way; it is possible that the necessary fac-
tors have already been found, but that their combined effect hasn’t been appreciated. In either case, the model 
should then be used to make experimentally testable predictions that could be used to support or disprove 
the model.

For example, in the TCR modeling study discussed above, the authors found that the conventionally 
accepted pathway for recruitment of the protein WAS (WASP) to the T-cell receptor was insufficient to 
account for observed rapid dynamics of WAS phosphorylation. An alternative, shortcut pathway was needed. 
The shortcut’s individual components had been described before, but had not been regarded as forming a 
pathway for fast recruitment of WAS. The model also pointed to previously uncharacterized roles for the 
tyrosine phosphatase PTPN6 (SHP1). Both aspects of the model were supported by experiments prompted 
for the purpose of testing the model (Chylek et al., 2014a) as well as in later studies (Paensuwan et al., 2015).

Model visualization is almost always helpful, especially if a model is large. In addition to making a model 
more understandable, visualisation can also serve as a basis for identification of network motifs, such as feed-
back loops (Chylek et al., 2014c).

The parameter values of a model can be explored in several ways. If there is reason to think that the 
model could exhibit bistability (the existence of two steady states, which can result from, for example, posi-
tive feedback), bifurcation analysis is a possibility. This type of analysis can be performed by incrementing 
a parameter from a low value to a high value and plotting the steady-state value of the resulting outputs for 
each value of that parameter. Then, the parameter is incremented from high to low, and outputs are plot-
ted again. If there is a range of parameter values where a given output has a different value in the two cases 
(the low-to-high case and the high-to-low case), then that is a region of bistability. Bifurcation analysis has 
been employed in recent studies of B-cell antigen receptor signaling (Barua et al., 2012) and FcεRI signaling 
(Chylek et al., 2014c).

Another common type of analysis that can be applied to any model is sensitivity analysis, whereby a 
parameter is altered by a certain percentage, and then the difference in output values is quantified. The ratio 
of the two is a sensitivity coefficient that informs us about which parameters in the model have the greatest 
bearing on specific model behaviors (Barua et al., 2012).

In a similar vein, one can explore what a model does under the conditions of various “virtual 
experiments.” Knockdowns, overexpressions, mutations, and the like can all be achieved by (usually 
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straightforward) modifications of the model. For example, a knockdown is achieved by lowering the copy 
number of a protein, an overexpression by increasing copy number, and a mutation by modifying the 
functionality of a component in a protein. This type of exploration may reveal interesting directions for 
future studies.

At each step in the history of quantitative investigation of FcεRI signaling, the content of models has been 
determined by multiple factors, including the state of knowledge in the field, the type of experimental data 
available for comparison, and the status of modeling software itself. The models of FcεRI signaling form an 
example of how different considerations influence the content of a cell signaling model, and how the very 
concept of what a model is has grown over time, from a picture of interactions, to a system of equations, to 
an executable program of rules.
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Physical models in immune signaling
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Physical models are created to explain select behaviors of a system of interest. The goal of a physical model 
is to elucidate a small number of mechanisms to explain not only a specific system, but also a class of sys-
tems that might show similar behaviors. In physical models, the pursuit of finding “the sameness” across 
different systems takes precedence over describing every minute detail in a particular system (Phillips, 
2017). In the words of Jeremy Gunawardena (Gunawardena, 2014), “The model that explains everything, 
explains nothing.” The inspiration for creating such models comes from physical sciences, in particular 
physics and chemistry where these models provided “foundational insights” (Phillips, 2017) into the real 
system. Broadly, the development process of physical models can be described in the following steps: 
(i) Choose a small set of features in the biological system of interest. The model should be able to explain 
these features or behaviors. The choice of the features is a crucial component in determining the useful-
ness and generality of the model. The modeler’s intuition plays a key role in this endeavor. (ii)  Make 
approximations and hypothesize mechanism(s). Physical models approximate detailed biological systems 
by few reduced variables and then hypothesize mechanism(s) using the reduced or coarse-grained vari-
ables to explain the chosen features. In some cases it might be possible to execute an exhaustive scan of 
all possible hypotheses (Lever et al., 2016b; Ma et al., 2009). (iii) Create a mathematical description for 
the model. This step creates a quantitative description of the hypothesized mechanism(s). (iv) Evaluate the 
consequences of the mathematical description. Depending on the complexity of the model this step is car-
ried out by pen-and-paper calculations and/or numerical simulations. The results of the calculations and 
simulations are then compared against available experimental data. (v) Test predictions. Once the model is 
able to explain the available data, it is then used to predict new features/behaviors that were not considered 

14.1	 Kinetic proof reading (KPR)	 228

14.2	 Open questions	 232

14.3	 Feedbacks	 232

14.4	 Open questions	 237

14.5	 Appendix I: Derivations of Eq. (14.2) and Eq. (14.3)	 237

14.6	 Appendix II: Modeling stochastic kinetics	 238

14.6.1	 Derivation of the master equation	 239

14.7	 Appendix III: Solution of the master equation using eigen-decomposition of L	 240

14.8	 Appendix IV: Solution of the master equation at the steady state using a graphical method	 242

14.9	 Appendix V: Network architecture and the detailed balance condition	 244

14.9.1	 Boltzmann distribution as a result of the detailed balance condition in the kinetics	 245

14.9.2	 Entropy production and quantification of dissipation	 245

Acknowledgments	 247

References	 247



228  Physical models in immune signaling

in building or validating the model. In this chapter we will restrict our discussion to comparing qualitative 
features between the model predictions and the experiments. There is an extensive literature where param-
eters in reduced models are estimated carefully by fitting model results with experimental data (Nelson 
et al., 2015). The interested reader can find more details on this topic in Chapter 15.

Now we will analyze two physical models: both were developed to explain specific features of T cell 
signaling.

14.1 � KINETIC PROOF READING (KPR)

Immune cells of the adaptive immunity such as T cells are able to discriminate (e.g., become activated 
or remain tolerant) between closely related ligands with high precision. The kinetic proofreading (KPR) 
model was proposed by McKeithan to explain this behavior (McKeithan, 1995). The KPR mechanism was 
originally proposed by Hopfield to explain low rate of error in protein synthesis, and DNA replication 
(Hopfield, 1974). McKeithan adapted this mechanism to explain the ability of T cells to distinguish ligands 
with nearby affinities with high precision. We will briefly describe how the development of the KPR mecha-
nism can be cast in the steps mentioned in the introduction.

Step (i). Antigen discrimination is one of the primary functions of T cells. However, T cells carry out other 
tasks as well, e.g., help mediate cell-cell communication by participating in cytokine signaling (Huse et al., 
2006). McKeithan chose to focus on a specific property of T cell antigen discrimination, namely, how do dif-
ferent antigens, characterized by the half-life of the TCR-antigen complex, produce different degrees of T cell 
activation?

T cell receptors (TCRs) on T cells interact with short peptide fragments (8 to 11 mers) bound to MHC 
molecules (or pMHC) residing on antigen presenting cells. The peptide fragments are derived from natu-
rally occurring host proteins (or self-peptides) or proteins associated with pathogens (or foreign peptides) 
(Murphy and Weaver, 2016). Self-peptide bound MHC molecules form complexes with TCRs lasting for frac-
tions of seconds, whereas foreign peptides gives rise to TCR-pMHC complexes with lifetimes that range from 
tens of seconds to minutes. Typically out of the 70,000 to 300,000 MHC molecules on an antigen presenting 
cell, only a small fraction (20 to 100 molecules) is occupied by foreign peptides, and the rest of the MHC 
population is bound to self-peptides (Murphy and Weaver, 2016). The puzzle McKeithan attempted to solve 
was how T cells become activated by a small number of high affinity foreign peptides but not by a large num-
ber of weak affinity self-peptides.

Before we start discussing McKeithan’s model it will be helpful to introduce a few properties of the ligand 
discrimination program.

	 1.	 Sensitivity. This property refers to the amount of change in T cell activation with the increase in the 
number or dose of a particular ligand (pMHC). We expect the T cell activation in the model to be sensi-
tive, i.e., a large increase in activation when the number of high affinity ligands increases from zero 0 
to few molecules (~10). However, the same T cells should remain inactivated when the number of weak 
affinity self-peptide-MHC complexes increase by a large number. This behavior is quantified by the next 
property.

	 2.	 Specificity. This term indicates how specific the T cell activation is to the ligand (pMHC) affinity given 
by the half-life of the TCR-pMHC complex. For example, when T cells are stimulated by a small (~10 
molecules) number of ligands of low (half-life ~ 10 sec) or high (half-life ~ 1 sec) affinity, only the high 
affinity ligands are able to produce T cell activation. Thus the antigen discrimination program in T cells 
is simultaneously both highly sensitive and specific.
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	 3.	 Speed. This term refers to the time scale of key signaling events that occur upon TCR-peptide-MHC inter-
action. The early key signaling events (e.g., Ca++ release, full phosphorylation of the protein Erk) that are 
tightly correlated with T cell activation occur within seconds to minutes of TCR engagement (Huse et al., 
2007). The model is expected to generate such time scales (or speed) for the T cell signaling kinetics.

Step (ii). The number of molecular events that are initiated upon TCR-pMHC binding is enormous. The events 
are composed of  a wide range of chemical modifications including phosphorylation, dephosphorylation, com-
plex formation, and hydrolysis of membrane lipids. In addition, physical changes such as clustering of selective 
receptors and actin remodeling come into play. The culmination of these signaling events leads to specific gene 
expressions that produce T cell activation marked by a several effector functions, such as cytokine secretion, cell 
proliferation, and the release of cytotoxins for target cell lysis (Murphy and Weaver, 2016). McKeithan’s ingenuity 
was to coarse grain the above details by a series of simple chemical modifications (Figure 14.1). The reduction of 
these details made it possible to clearly connect the TCR-pMHC half-life to the amount of active complexes pro-
duced during the signaling kinetics. The simplifications also posed the danger of ignoring details that could play 
important roles in regulating activation. We will discuss implications of these simplifications later in the section.

McKeithan invoked the kinetic proof reading mechanism by hypothesizing a step where once the TCR 
unbinds from an intermediate complex, all the chemical modifications are reversed and the complex returns 
to the starting inactive state. A similar kinetic proofreading step proposed by Hopfield and Ninio recycled 
intermediate complexes to generate high fidelity in protein synthesis or DNA replication (Hopfield, 1974; 
Ninio, 1975). A key feature of the KPR step is the recycling of the erroneous intermediate complexes to the 
native state with a finite rate before they are taken up for further processing. This step breaks detailed balance 
in the kinetics and thus the execution of the biochemical reactions requires a continuous supply of energy (see 
Appendices II-V for further details).

Step (iii). McKeithan described the kinetics in the model (Figure 14.1) using first and second order mass 
action kinetics. The mass action kinetics represents an approximate and reduced description of the actual 
kinetics (Gunawardena, 2014). For example, the binding interaction between the TCR and pMHC involves 
electrostatic interactions between many protein residues and solvent molecules. Moreover, interactions 
between multiple TCR and pMHC molecules are further influenced by the quasi two-dimensional confine-
ment of these molecules between the opposing APC and T cell membranes (Huang et al., 2010; Qi et al., 
2006). Therefore, the mass-action rate, d[TM]/dt = kon[T][M]–koff[TM], provides an approximate description 
of the kinetics with the benefit of clearly relating the time dependence of the concentrations on the kinetic 
rates and the total concentrations of the reacting species. The off rate, koff, determines the half-life (~1/koff) of 
the complex and has been used to characterize the affinity of a peptide-MHC toward a TCR. However, the 

T + M C0 C1 CNCN-1
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Figure 14.1  Schematic representation of McKeithan’s model. The free TCR (T) and free pMHC (M) molecules 
interact to generate a complex (C0) that undergoes multiple chemical modifications to via a series of interme-
diate partially activated complexes C1, ..., CN-1 to generate the active complex CN. The KPR step in the model is 
the complete deactivation of the any of the activated complex where the ligand (pMHC) unbinding takes the 
complex to the starting inactive state (T + M).
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relation between potency of a ligand to activate T cells and t1/2 is more nuanced and is better characterized by 
an aggregate dwell time for the ligand. The aggregate dwell time is a function of both koff and koff /kon (Govern 
et al., 2010). The mass action kinetics in the KPR model (Figure 14.1) are described by the following ordinary 
differential equations.
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The first three equations contain second order binding reactions; however, the rest of the reactions are of 
first order and therefore it is possible to analyze the kinetics easily in the steady state.

Step (iv). For insight into the effect of the KPR step, we first solve the kinetics for a three-state system when 
there are only two complexes, C0 and C1, and the unbound state with T0 number of TCR and M0 number of 
pMHC molecules. Here the steady state is given by,
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The above equation is a quadratic equation in [C0] which can be easily solved to obtain [C1] using Eq. (14.1),
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For the parameter values, koff>kp>kd, and, KD (=koff/kon) ≫ T0> M0, we can show (see Appendix I),
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At this point, it will be instructive to analyze the steady state of the above system without the KPR step 
where the relation between [C0] and [C1] is given by,
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The relation corresponding to that in Eq. (14.2a) in this case is given by,

	 [C ] 1/k T M k O((T /K ) , (M /K ) )1 off 0 0 on 0 D
2

0 D
2= ⋅ + 	 (14.2b)

Comparing Eq. (14.2a) and (14.2b) we find that the presence of the KPR step gives rise to a larger change 
(1/koff

2 vs 1/koff) in [C1] with the ligand half-life or koff and thus produces a better ligand discrimination 
property.

The cost of executing the KPR step is a continuous dissipation of energy, which must be supplied to the 
system. Dissipation is a common feature of signaling kinetics that arises due to the breakdown of detailed 
balance in the kinetics. The detailed balance condition is tied to the presence of microscopic reversibility in 
the kinetics. There is a relation between network topology and microscopic reversibility which can be utilized 
in building models that are required to break the detailed balance condition. See Appendices II-V for details.

McKeithan carried out the analysis for N number of intermediate species in the limit kd = 0 which further 
simplifies the calculations. At the steady state the intermediate complex concentrations are recursively related:
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where,
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As before, one can show,
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The factor 1/(koff)N+1 in Eq. (14.3) increases the specificity of the response dramatically. For example, if koff 

values for a weak and strong affinity ligands are (koff)weak = 1.0kp and (koff)strong = 0.1kp, then the ratio of the acti-
vated complex formed for these two ligands will be [CN]weak/[CN]strong = (0.1/1)N+1 = 10–(N+1); therefore, a 10 fold 
difference in the affinity has been amplified into a difference of 10N+1 fold (1000 fold when N = 2). However, this 
occurs at a cost of decreased sensitivity to the ligands and larger activation times τ. The sensitivity decreases 
as the value of [CN] decreases exponentially (as αN[C0]) with increasing N. The time scale to for an activation 
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step is about 1/kp the in mass action kinetics, thus the activation time increases with increasing N as τ ~N/
kp. The above model ignored stochastic fluctuations in the copy numbers of the molecular species. Chemical 
reactions are inherently stochastic in nature due to thermal fluctuations and including the such fluctuations 
can quantitatively and even qualitatively change the kinetics. The stochastic modeling of the KPR model is 
described in Appendices II-V.

Step (v). The KPR model developed here should be used to make qualitative instead of quantitative com-
parisons with experiments. This is because the model makes many simplifying assumptions, and the details 
not considered in the model could affect the numerical values of the species concentrations (say, CN) that are 
compared with experiments. It is difficult to determine the precise number (N) of intermediate complexes 
during T cell signaling because the kinases (e.g., ZAP70) and phosphatases involved in the modifying the TCR 
complex can also possess multiple activation states. Within these limitations the KPR model is able to explain 
the high specificity of T cell activation. Predictions from a modified version of McKeithan’s model agreed well 
with experiments done for activation of Mast cells by triggering FcϵRI receptors (Faeder et al., 2003).

However, an important limitation of the above model is the linear increase of the abundance of the activated 
species with ligand concentration (Eq. (14.3)) (François et al., 2013). This implies that self-peptides if present 
in large numbers can still activate the T cells. This is not consistent with the measurements. Furthermore, 
recent experiments with well defined antigens show a bell-curve shaped dose response (lower activation both 
at low and very high antigen doses) for high affinity ligands (Lever et al., 2016a). The KPR model is qualita-
tively inconsistent with these results, and coupling of the KPR model with feed-forward chemical reactions 
can restore such features in the kinetics (Lever et al., 2016a).

14.2 � OPEN QUESTIONS

The KPR model was developed to explain the highly sensitive ligand discrimination property of T cells. 
However, in the recent years mechanical interactions between T cells and antigen presenting cells and reor-
ganization of actin polymers beneath the T cell plasma membrane have been found to play an important role 
in generating ligand sensitive responses (Feng et al., 2017). Furthermore, complex biochemical modifications 
involving feedback interactions at very early stages of TCR triggering important for initiation of T cell signal-
ing (Chakraborty and Weiss, 2014). Thus it is an interesting question to investigate the precise contribution 
of the KPR mechanism in giving rise to the ligand discrimination program in T cells in the presence of the 
above effects. This question is also related to a broader question of “retroactivity” in signal transduction net-
works where one is interested in how the input/output relation in a small signaling module changes when the 
module is embedded in a larger signaling network (Del Vecchio et al., 2008).

14.3 � FEEDBACKS

Feedbacks are common motifs in signaling networks. A positive (or negative) feedback augments (or inhibits) 
production of a molecular species. Positive feedbacks have been found to generate sharp changes and memory 
in activation of specific molecular species during signaling (Das et al. 2009a). Negative feedbacks can give rise 
to oscillations (Hoffmann et al., 2002) in the kinetics, and combinations of positive and negative feedbacks 
can generate transient activation in signaling species (Mukherjee et al., 2013a). Physical models have been 
quite successful in elucidating mechanisms by which feedbacks affect signaling responses (Ferrell Jr and 
Xiong, 2001; Murray, 1989; Nelson et al., 2015). We will discuss an example of a positive feedback in regulat-
ing T cell activation here (Das et al., 2009a). We will not explicitly outline the steps as in the KPR model here 
and hope the reader will be able to identify those from the description below.

Ras-SOS positive feedback during early time T cell activation. T cells produce binary responses (acti-
vation or tolerance) when the dose of a high affinity peptide-MHC molecule crosses a threshold value. 
However, when the antigen dose is increased, many experiments showed that the increase in the numbers 
of the very upstream signaling markers such as phosphorylated ITAMs associated with TCRs are gradual 
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or analogue in nature. Therefore, a question of interest is how this analogue input signal is converted into a 
digital output or a binary response. The kinetic proofreading mechanism proposed by McKeithan attempts to 
explain such behavior; however, there are issues regarding the low sensitivity of the response with increasing 
antigen dose in the model. An alternate or even a complementary mechanism to KPR that can generate such a 
behavior is a positive feedback. There are several examples of positive feedback (Altan-Bonnet and Germain, 
2005; Mukherjee et al., 2013b) in the membrane proximal lymphocyte signaling events that can potentially 
produce sharp increase in abundances in downstream activation markers, such as phosphorylated Erk. One 
such positive feedback involves the activation of a protein Ras. Ras is a membrane bound protein that plays 
an important role in cell growth and proliferation (Mor and Philips, 2006). Ras becomes active when it binds 
GTP but is inactive when bound to GDP (Margarit et al., 2003). The transition between the active and inac-
tive forms of Ras occurs at a much slower time scale (~hours) than that of the signaling time scales (~mins). 
Lymphocytes possess enzymes that make these transitions occur at faster time scales. SOS (Son of Sevenless) 
and Rasgrp1 are two enzymes in T and B cells that make the activation of Ras (RasGDP→ RasGTP) occur in 
minutes. The enzyme RasGAP, on the other hand, regulates the de-activation process, RasGTP→ RasGDP.

The reactions RasGDP↔RasGTP represent exchange of GDP/GTP molecules within Ras (Mor and Philips, 
2006). Ras activation is an important event in lymphocyte signal transduction, as RasGTP initiates activation 
of MAP kinase cascades that control cell functions such as proliferation, cytokine secretion, cell survival, and 
apoptosis. The positive feedback in Ras activation arises via SOS (Jun et al., 2013; Mor and Philips, 2006). A 
SOS molecule contains an allosteric site that can bind to either RasGTP or RasGDP, and when the allosteric 
site is occupied with RasGTP, the rate of Ras activation increases over 75 fold (Das et al., 2009a; Iversen et al., 
2014). Thus, once few molecules of RasGTP are present, they can increase the rate of RasGTP production by 
binding to the allosteric site of SOS. This creates a positive feedback in Ras activation. The enzyme Rasgrp1 
also mediates Ras activation; however, unlike SOS, it does not possess any allosteric site to further regulate its 
catalytic rate. A role of Rasgrp1 could be to produce enough numbers of RasGTP initially to ignite the positive 
feedback in Ras activation via SOS. The goal of a physical model in this case could be to determine the mecha-
nisms underlying the interplay between the two enzymes SOS and Rasgrp1 in producing Ras activation and 
how that activation can be used to explain digital T cell responses against a gradual change in antigen dose.

In order to develop a physical model, we need to make several simplifying approximations akin to those 
in the KPR model. The interactions involving Ras, SOS, Rasgrp1, and RasGAP include several other molecu-
lar species such as GTP and GDP, Grb2 (a protein that binds SOS to the TCR-pMHC complex), DAG (a lipid 
component in the plasma membrane), the protein PKC (activates Rasgrp1) (Jun et al., 2013), Ca++ ions (mol-
ecules that regulate RasGAP activation) (Mor and Philips, 2006), and membrane lipids (molecules that regu-
late access of RasGTP to SOS allosteric site) (Iversen et al., 2014; Jun et al., 2013). We will coarse-grain these 
interactions in creating a simple model in which SOS and Rasgrp1 produce RasGTP from RasGDP following 
enzymatic reactions and RasGAP carries out the reverse reaction RasGTP→ RasGTP as an enzyme. The 
positive feedback induced by SOS in RasGTP production was first found in in vitro experiments, and the 
existence of the allosteric and the catalytic pockets in the SOS molecule was supported by crystallographic 
studies. Thus, the inclusion of the positive feedback via SOS in the model aiming to describe the Ras activa-
tion in T cells is a hypothesis, which needs to be further tested against experiments. This was confirmed in a 
set of experiments combined with in silico modeling in T and B cells. We will describe the model developed 
in (Das et al., 2009a) using a simple model involving the kinetics of RasGTP abundances alone.

Deterministic model: The simple model we describe here captures the basic features of the kinetics, such as 
bistability and hysteresis, produced by the detailed biochemical model in Das et al. (2009a). The deterministic 
kinetics of the abundance of RasGTP ([RT]) in a volume V in the simple model is given by the ODE below:
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where [RD] ≡ RasGDP abundance in a volume V, [RT] ≡ RasGTP abundance in V, and, [RD] + [RT] = R0 ≡ 
the total Ras abundance in V. This simple model ignores the role of SOS with an allosteric site that is empty 
or occupied with RasGDP in producing Ras activation for the sake of simplicity. In Eq. (14.4), [E] denotes 
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the abundance of the enzyme RasGRP1 in V. We used a Michaelis-Menten form (Murray, 1989) to simplify 
the rates for enzymatic activation/deactivation of RasGDP/RasGTP. The Michaelis-Menten approximation 
holds when the abundance of the substrate ([RD] or [RT]) is larger than that of the enzyme (RasGRP1/SOS/
SOSallo-RasGTP or RasGAP). The enzymes in this situation are rendered activated by the incoming signal, 
e.g., SOS in the cytosol is recruited to the plasma membrane by binding to the protein Grb2 associated 
with the TCR signaling complex that is formed upon TCR, pMHC binding. Thus, the abundances of the 
enzymes at low signal intensities are likely to be much smaller than the substrates. The first term in Eq. 
(14.4) describes the enzymatic activation of Ras-GDP by the enzymes RasGRP1 and SOS without the posi-
tive feedback. The second term describes Ras activation by the enzyme complex SOSallo-RasGTP, when the 
allosteric pocket of SOS is occupied by RasGTP. Since the copy number of SOSallo-RasGTP is dependent 
on the copy number of RasGTP, one can approximately describe the dependence of [SOSallo-RasGTP] as 
proportional to the number of free RasGTP. Thus, the Ras activation rate in the above equation becomes 
linearly dependent on [RasGTP]. [SOSallo-RasGTP] also depends on the number of SOS molecules. We have 
assumed an implicit dependence of [SOS] on the rate kF as kF ∝ [SOS]. The last term describes the enzy-
matic de-activation of RasGTP by RasGAP. In order to understand the steady state behavior of the above 
kinetics, we graphically analyzed the dependence of terms g([RT]) and d([RT]) on [RT] (Figure 14.2). The 
curves for g([RT]) and d([RT]) will intersect at the fixed point(s) ([RT

*]) of Eq. (14.4). The stability (stable or 
unstable) of the fixed points is determined by the derivatives, ′g ([R ])T  and ′d ([R ])T  or the slopes of the 
curves at the point(s) of intersection. If [RT] is changed by a small amount δRT from its value [RT*] at a fixed 
point, then the kinetics of δRT, to the first order of δRT, is given by,
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Figure 14.2  Schematic diagram showing Ras activation and de-activation. This figure shows Ras activation 
by the enzymes SOS and Rasgrp1. The complexes in which the alloestric site in SOS is occupied by RasGTP or 
RasGDP are indicated. The enzyme RasGAP catalyzes Ras deactivation.
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Thus, when ′g ([R* ])T - ′d ([R* ])T  <0 (or >0), the fixed point [RT] = [RT*] is a stable (or an unstable) fixed point. 
We can now analyze the graphs for g([RT]) and d([RT]) at low, intermediate, and, high values of kF and [E]. 
Increasing the values of kF and [E] represent increasing the SOS and the Rasgrp1 abundances in V, respectively. 
We first consider the variation of kF at [E] fixed at a small value ([E] = 10 molecules) (Figure 14.3a). Under this 
condition, the g([RT]) and d([RT]) curves intersect at a single point at low and high values of kF; and at interme-
diate values of kF, the curves intersect at three points (Figure 14.3a). By analyzing the slopes of the curves at the 
points of intersection (Figure 14.3b), we can easily check that the fixed point at the lowest and the highest value 
of [RT*] are stable fixed points. The fixed point at the intermediate value of [RT*] is an unstable fixed point. The 
unstable fixed point arises at intermediate values of kF (Figure 14.3a). This phase diagram fixed points (Figure 
14.3c) provides the following interpretation of the Ras activation kinetics. At low kF values or SOS abundances, 
regardless of the initial value of [RT], the system sustains a low value of [RT] because of the dominance of the 
reactions mediating Ras de-activation over Ras activation. At high kF values, the situation is reversed, for any 
initial value of [RT] the kinetics sustains a large value of [RT] at the steady state. At intermediate values of kF, 
there is an unstable fixed point at an intermediate value of [RT] = [RT*]unstab. Therefore, if the initial [RT] = [RT]ini 
is less than [RT*]unstab, the system settles to a lower [RT*] value at the steady state as there is not enough RasGRP 
molecules to ignite the positive feedback. In contrast, if [RT]ini>[RT*]unstab, the available RasGTP molecules use 
the positive feedback to produce a higher value of [RT*] (Figure 14.3c).

The dependence of the steady state behavior on the initial state is the manifestation of the presence of mul-
tiple stable fixed points in the kinetics. This behavior can also give rise to a memory in Ras activation is also 
known as hysteresis, where the Ras activation at particular signal input is dependent on whether the current 
input value was attained from a higher or a lower signal input (Figure 14.4a). Next we considered the variation 
of Ras activation with [E] when kF was held fixed at an intermediate value (Figure 14.4b). As [E] was increased 
from [E] = 0, the unstable fixed point and the stable fixed point at the smallest [RT*] value moved closer to each 
other and eventually these two fixed points “annihilated” each other to be survived by the stable fixed point at 
the largest [RT*] value. The behavior can be interpreted as follows. Increasing the Rasgrp1 abundance (or [E]) 
produced RasGTP molecules that helped ignite the positive feedback in SOS to generate a high Ras activation. 
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Figure 14.3  Steady state analysis of Ras activation in the simple model. (a) Shows the variation of g([RT]) and 
d([RT]) with [RT] for three different values of kF = 0.038/5 s–1 (low), 0.038 s–1 (intermediate), and, 0.038 × 4 s–1 
(high). [RT] was given by the number of Ras-GTP molecules in a volume V = 4 μm2 × 0.02 μm. The values of the 
other parameters are the following: kE = 0.01 s–1, kd = 0.1 s–1, KME = 144 molecules, KMF = 120 molecules, [E] = 
10 molecules, and, KMD = 7.7 molecules. The fixed points are given by the intersection points of the curves 
corresponding to g([RT]) and d([RT]). The inset shows the close up of the curves in range 0≤ [RT] ≤30 molecules. 
(b) Schematic diagrams show the tangents to the curves for g([RT]) and d([RT]) at the intersection points cor-
responding to kf = 0.038 s–1. The derivatives, g’([RT]) and d’([RT]), are given by the slopes equal to tan(θ) where θ 
is the angle between the tangent vector and the x-axis. This relation allows one to easily check the stability of 
the fixed points by visually inspecting the points of intersections of the curves. (c) Shows the flow of the initial 
condition to the fixed points for the case kF = 0.038 s–1.
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Therefore, as the Rasgrp1 abundance (or [E]) increased the starting RasGTP (or [RT]ini) amount required to 
sustain the largest [RT*] decreased, and beyond a threshold value the larger Rasgrp1 abundances were suffi-
cient to generate enough RasGTP molecules to produce the largest Ras activation via the SOS feedback.

Stochastic model: The effect of the intrinsic noise fluctuations can be analyzed by solving the Master equa-
tion corresponding to Eq. (14.4). If we denote the number of RasGTP molecules in a single cell by n, then the 
distribution of RasGTP abundance in a cell population at a time t is given by the probability distribution 
function P(n,t). The time evolution of P(n,t) is given by the Master Equation,
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The time dependent Master equation in Eq. (14.5) can be solved exactly by calculating the eigenvalues and 
eigenvectors of L. This approach is described in Appendix III. This is a powerful method which allows one 
not only to exactly calculate probability distribution functions for copy numbers but also to calculate prob-
ability distributions of other relevant variables, such as the first passage time distributions or maximal value 
distributions (Das, 2013). A Mathematica code for solving Eq. (14.5) is provided at the link http://planetx​
.nationwidechildrens.org/~jayajit/das_chapter/Mathematica_codes. We also discuss a graphical method for 
calculation of the steady state solutions analytically in Appendix IV. The advantages of using these approaches 
are discussed in Appendices III-V.

The solutions reveal that stochastic fluctuations have a profound effect on Ras activation, in particular in 
the bistable region, in Ras activation single cells. The results show that Ras activation in a cell population can 
show a bimodal behavior, i.e., a subgroup of cells will contain large Ras activation vs the rest at low Ras activa-
tion at a time t, even when all the cells started at time t=0 with identical initial conditions (Das et al., 2009a). 
Therefore, the stochastic fluctuations in Ras activation create large enough numbers of RasGTP molecules in 
a subgroup of cells where it is able to engage the positive feedback and produce higher RasGRP concentra-
tions. This behavior was confirmed in experiments with SOScat.
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Figure 14.4  Hysteresis and dependence of Ras activation on [Rasgrp1]. (a) Schematic diagram showing the 
increase of steady state Ras activation (black line) as [SOS] was increased for initial [RT] fixed at a small value. 
The steady state [RT] decreases (grey line) following a different trajectory when [SOS] is decreased for a state 
containing large values of initial [RT]. (b) Shows the fixed points as [E] is varied in the simple model. kF = 0.038 s–1 
and the other parameter values are the same as in Figure 14.3b.
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14.4 � OPEN QUESTIONS

The above analysis ignores several features that could be important in regulating Ras activation in lymphocytes. 
The well-mixed assumption breaks down when reactants diffuse at a slower rate compared to the reaction time 
scales. This situation is particularly relevant for proteins (e.g., Ras) residing in the plasma membrane where the 
proteins diffuse at a much smaller rate compared to the cytosol. The presence of positive feedback in reactions can 
give rise to spatial spreading of activated species (e.g., RasGTP) in travelling waves (Das et al., 2009b). A recent 
experiment using lipid anchored Ras molecule on lipid bilayers and modeling demonstrated the presence of 
many states in SOS activation giving rise to a broad distribution of turnover rates for SOS-induced Ras activation 
(Iversen et al., 2014). Iversen et al. suggested an extension of the model by introducing a distribution of kcat values.

Another relevant issue is the question of retroactivity. The Ras activation module discussed here is con-
nected with other signaling modules. The participant signaling molecules in these modules can interact via 
positive and negative feedbacks. In addition, there is active intercellular transport of Ras between endo-
membranes of organelles (e.g., Golgi bodies). It is important to know how the bistability and hysteresis in Ras 
activation is influenced by the above spatial effects, retroactivity, and active transport. Some of these issues 
were studied recently in in silico modeling in the context of EGFR signaling (Kochanczyk et al., 2017).

14.5 � APPENDIX I: DERIVATIONS OF EQ. (14.2) AND EQ. (14.3)

Derivation of Eq. (14.2)
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Define, x = [C0]. The above equation is given by
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Choosing the stable (-ve sign) solution,
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Replacing the above form for [C0] in Eq. (14.1) we get Eq. (14.2a).
Eq. (14.3) can be derived by summing the geometric series,
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14.6 � APPENDIX II: MODELING STOCHASTIC KINETICS

The copy numbers of molecular species in chemical reactions can change randomly with time. These 
stochastic f luctuations in the copy numbers, known as the intrinsic noise f luctuations, arise naturally 
due to thermal f luctuations in the system (Kampen, 1992). Therefore, two isolated identical chemical 
reaction systems that start reacting at the same initial condition (e.g., the same copy numbers of reac-
tants species) will contain different copy numbers of the reacting species at any later time as the chemi-
cal reactions progress in the systems. There can be additional sources of variations in the copy numbers 
of molecular species resulting from the differences in cellular environments between individual cells, 
that often manifest as cell-cell differences in total abundances of a protein species or reaction rate con-
stants (Swain et al., 2002). Such cell-cell variations are usually known as extrinsic noise f luctuations. In 
the presence of these f luctuations, a state represented by a specific set of copy numbers of molecular spe-
cies in a single cell occurs at any time with a certain probability. The time evolution for the probability 
distribution function of the states is described by the Master equation (Goel and Dyn, 1974; Kampen, 
1992). We derive the Master equation for a simple set of chemical reactions (Figure 14.5) pertaining to 
the kinetic proofreading model described here (Das, 2016).

T*M

T*M

T + M

T + M

3

w3 = k1
1

w3 = kp
2

w3 = kp
2

w1 = koff
3

w1 = koff
2

w1 = koff
2

w2 = kon
1

w2 = kon
1

w2 = kd
3

w2 = kd
3

1

2 TM

TM

1 32

(a)

(b)

Figure 14.5  A three state model for KPR. (a) A single TCR (T) binds to a single pMHC (M) to create the com-
plex TCR-pMHC (TM). The TM complex undergoes a chemical modification (e.g., tyrosine phosphorylation) to 
produce the active complex, T*M. The active complex dissociates to the initial inactive state containing free 
TCR and pMHC molecules. This is the KPR step. A very small rate k1 is assumed to directly convert the free TCR 
and pMHC molecules to the active T*M state to keep some of the calculations finite. k1 can be taken to be of 
very small value such that it does not realistically affect the kinetics in the time scales of interest. The chemical 
reactions move the system between three states, (1) T+M: free TCR and pMHC, (2) TM: the bound complex, 
and, (3) T*M: the active complex. (b) The model in (a) without the KPR step.
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14.6.1 �D erivation of the master equation

Consider the chemical modifications in Figure 14.5a. There are three states: the unbound single molecules 
of T and M (state #1), the bound complex (state #2), TM, and, the active complex T*M (state #3). The system 
starts from an initial state i0 (e.g., state#1 or i0 = 1) at t = 0 and transitions to the other states due to the chemi-
cal modifications (Figure 14.5). We will derive an equation that describes the time evolution of the states in 
terms of the conditional probability P(i,t|i0,0). P(i,t|i0,0) denotes the probability that the system is in the state 
i at time t (>0) given that the system was in the state i0 at t = 0. We denote this conditional probability as pi(t) 
for brevity. In the next few steps we will determine the change in pi(t) for a small increment of time from t to 
t + Δt. Δt is small enough to not allow more than one reaction to occur in Δt. pi(t + Δt) can be expressed in 
terms of pi(t) as,
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j

( ) ( , , ) ( ) ( ; , ) ( )+ = + + +
=

∆ ∆ ∆|
1

jj i≠

∑
3

	 (14.6)

where T(i,t + Δt|j,t) is the probability for the transition j→i to occur between t + Δt and t, and Q(i;t + 
Δt,t) is the probability that no reaction occurred and the system remained in the state i in the same time 
interval.

The above equation is derived using the basic addition rule of probability for mutually exclusive events 
(Rényi, 2007). For example, three mutually exclusive events can occur in the time interval t to t + Δt to pro-
duce the state i = 1 at t = t + Δt: (1) The system was in the state i = 1 at time t and it remained in the same state 
throughout the interval. (2) The system was in the state i = 2 at time t and the reaction 2→1 changed the state 
to i = 1. (3) The system was in the state i = 3 at time t and it transitioned to the state i = 1 due to the reaction 
3→1. In relating p1(t + Δt) to p1(t), Eq. (14.6) sums up the probabilities for the each of the above mentioned 
mutually exclusive events (1) to (3). The same calculations can be done for any other pi(t + Δt) as well. Note the 
usefulness of the assumption regarding the size of Δt (i.e., no more than one reaction can occur) in determin-
ing the number the mutually exclusive events.

Now we need to calculate the transition probability T(i,t + Δt|j,t) using the reaction propensities. This can 
be done using a frequentist approach (Rényi, 2007). For example, for the reaction 2→1, T(1,t + Δt|2,t) = koffΔt = 
w2

1Δt where the transition rate is wj
i and wj

i Δt is the probability for the transition j→i. The probability that no 
reaction occurs in the time interval t to t+Δt is calculated using the conservation of the total probability, i.e., 
the probability for the system to stay in the state i in the interval + the probability for the system to leave the 
state i in the interval = 1. Thus, the probability for leaving the state i in the interval is ∑j T(j,t+ Δt|i,t), where, the 
sum is over all the possible reactions i→j (j≠i). For example, when i = 1, both the reactions 1→2 and 1→3 can 
displace the system from the state i = 1, thus Q(1; t + Δt, t) = 1-konΔt –k1Δt = 1-w1

2Δt-w1
3Δt. Eq. (14.6) now can 

be rewritten as:
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Rearranging the terms:
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In the limit Δt→0:
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δ δ δ . δij is the Kronecker delta function, δij = 1 when i = j and δij = 0 

when i≠j. This is the Master equation. Note the above equation also satisfies a conservation law:
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The conserved quantity, i.e., the sum of all the probabilities is chosen to be ∑ipi(t) = 1.
We will now describe a method for solving the Master equation.

14.7 � APPENDIX III: SOLUTION OF THE MASTER EQUATION USING 
EIGEN-DECOMPOSITION OF L

The Master equation in Eq. (14.7) can be viewed as a set of coupled first order ordinary differential equations 
represented by a matrix equation:

	

d t
dt

t
p

Lp
( )

( )= 	 (14.8)

where pi in Eq. (14.7) is the ith element of the column matrix p(t), and Lij in Eq. (14.7) is the ijth element of the 
3 × 3 matrix L. The initial condition is given by:

	 p f( ) .0 = 	 (14.9)

Eqs. (14.8) and (14.9) can be easily generalized to higher dimensions. The elements of p(t) are non-negative 
and the elements of L are real numbers. Eq. (14.8) can be solved exactly by calculating the eigenvectors and 
eigenvalues for the matrix L. The execution of this method can become challenging as the dimension of L 
becomes large. This is common for signaling networks where the dimension of L quickly becomes enormous 
for realistic numbers of reacting biochemical species and their copy numbers. There are several approxima-
tion techniques to deal with such situations (Munsky and Khammash, 2006). We will derive the solution for 
a general case with n number of states (n=3 represents Eq. (14.8)) using the Dirac-notation (Dirac, 1935). This 
notation is widely used in Quantum Physics and allows us to describe the matrix operations in a compact but 
clear manner. We briefly introduce the notation here. p  and q  denote the column and the row matrices, 

respectively, and q p|  denotes the scalar product between the vectors, i.e., q p q pi i

i

n

| =
=

∑
1

. {q1,..,qn} and 
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{p1,..,pn} denote the elements of the q row and the p column matrices, respectively. The element pi in Eq. (14.7) 
is p i pi ≡ |  and the ijth element of L is, L i L jij ≡ | | . i  (or i ) represents a 1× n (or n×1) column (or row) 
vector where the ith element is 1 and the rest of the elements are zero. In this notation, p i pi ≡ |  and Eq. (14.8) 

takes the form 
d p t

dt
p t

( )
( )= L  and Eq. (14.7) is represented by:
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Where eR
i( )λ , and eL

i( )λ denote the right and left eigenvectors of L corresponding to the eigenvalue λi, i.e., 
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i i( ) ( )λ λλL = . The eigenvectors, e eR R
n( ) ( ), . .,λ λ1{ }, and e eL L
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an orthonormal basis set for any 1×n matrix or vector (e.g., p  in Eq. (14.10)), i.e., e eL R ij
j i( ) ( ) .λ λ δ=

Now p  can be written as a linear superposition of the vectors eR
i( )λ  as:
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Thus, the time evolution in p t( )  can be described as a time evolution in {ai(t)}. We will use the resolution 
of the identity (or the completeness) relation (Mathews and Walker, 1970),
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where, I is the n×n identity matrix, and the left hand side of Eq. (14.12) denotes the outer product of the row 
and the column vectors, j , and, j , respectively.

Substituting Eq. (14.11) in Eq. (14.10), and using Eq. (14.12) gives us,

	
e

a t
t

a t L e a t eR
i

i

n

i R

i

n

i i R
i i( ) ( )( )

( ) ( )λ λ λ∂
∂

= =
= =

∑ ∑
1 1

(( )λi

i

n

=
∑

1

	 (14.13)

Equating the coefficients for the individual eigenvectors form both sides of Eq. (14.13),
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Thus, the solution is given by,
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The {ai(0)} is calculated from the initial state p( )0  as
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We can express aj(0) in terms of fi (Eq. (14.9)) as,
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Therefore, the solution for pi(t) is given by,
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A program written in Mathematica is available at the link http://planetx.nationwidechildrens.org/~jayajit​
/das_chapter/Mathematica_codes that solves the kinetics in Figure 14.5 using Eq. (14.8)-(14.15).

14.8 � APPENDIX IV: SOLUTION OF THE MASTER EQUATION 
AT THE STEADY STATE USING A GRAPHICAL METHOD

Here we introduce a graphical method for solving the Master equation at the steady state (or dpi/dt = 0). The 
method serves two purposes. (i) It provides a straightforward technique to express the solution in a closed 
form for simple networks. (ii) It provides a deeper understanding into the kinetics. The method is based on 
Kirchhoff’s method that solves a set of coupled linear algebraic equations for finding currents in electrical 

networks. The Master equation (Eq. 14.7) at the steady state, i.e., L pij

i

j

=
∑ =

1

3

0  poses a similar problem for 

evaluating {pj}. We apply the method on the example with three states for the sake of pedagogy. We will closely 
follow the notations and the steps developed in (Zia and Schmittmann, 2007) for this part. Generalization of 
this approach to a larger network is straightforward. The method is executed in three steps.

Step(0): Create a graph for the reaction network. Each vertex in the graph represents a unique state that can 
occur in the network. The vertices in Figure 14.5 show the three possible states that arise in the system. 
A directed edge (or a line with an arrowhead) from vertex i to vertex j is drawn if transition probability 
(or wj

iΔt ≠ 0) for the transition is non-vanishing.
Step(1): Construct all possible distinct spanning tree graphs from the graph created in Step(0). A spanning 

tree graph is a graph that connects all the vertices in a graph with the minimum number of undirected 
edges (Trudeau, 2013). Thus, a spanning tree does not contain any loop. For a graph with N number of 
vertices it is possible to construct NN–2 number of spanning trees, therefore, for N = 3 there will be 31 = 3 
different spanning trees (Figure 14.6). We index the spanning trees by {tα} = { t1, t2, t3}.

Step(2): Construct directed graphs out of the spanning trees created in the previous step by replacing the 
undirected edges by directed edges when there is a non-zero transition probability associated with it. To 
solve for p1 we need to consider the directed graphs where every arrow in the spanning trees points to a 

http://planetx.nationwidechildrens.org
http://planetx.nationwidechildrens.org
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flow toward vertex #1 (Figure 14.7). In the same way, for evaluating p2 and p3, we will consider directed 
graphs where the edges point to vertex #2 and #3, respectively (Figure 14.6). Once the graphs contribut-
ing towards the calculation of pi are identified, we can start calculating the terms in the pi’s that arise 
from these graphs.

Step(3): Calculate contributions of the spanning trees, t1, t2, and t3 to {pi}. The contribution of the spanning 
tree tα to pi is denoted by U(tα(i)). U(tα(i)) is calculated by multiplying the transitions rates (or wj

i’s) for the 
transitions associated with the directed edges in the spanning tree (Figure 14.7).

Thus, U(t1(1)), U(t2(1)), and, U(t3(1)), are given by,
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The other {U(tα(i))} are calculated in the same manner. pi is given by
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Figure 14.6  Spanning trees for the three state model. Shows the three spanning trees indexed by {tα} = 
{t1, t2, t3}.
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Figure 14.7  Directed graphs contributing to the calculations of {pi} following Eq. (14.16). The spanning trees 
(t1, t2, and t3) corresponding to pi are denoted by t1(i), t2(i), and t3(i).
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where the partition function Z is defined as:
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In Appendices V-VI we use the graphical formulation developed here to gain deeper understanding into 
the kinetics, e.g., probe the presence of microscopic reversibility in the kinetics.

14.9 � APPENDIX V: NETWORK ARCHITECTURE AND THE DETAILED 
BALANCE CONDITION

The energy utilized by a chemical reaction network is intimately tied with the presence or absence of the 
detailed balance condition. The presence of the detailed balance condition in turn is tied to the existence 
of microscopic reversibility in the kinetics. The presence of microscopic reversibility in stochastic kinet-
ics is evaluated by the Kolmogorov criterion (Zia and Schmittmann, 2007). We introduce the concept of 
the Kolmogorov criterion and the detailed balance condition using our simple example in Figure 14.5. 
Generalization of these concepts to more complicated reaction networks is straightforward. The Kolmogorov 
criterion in a stochastic kinetics checks for the equality of probabilities for a series of transitions for two 
cases where the transitions begin and end at the same state but the changes occur in opposite (“forward” 
and “reverse”) directions (Figure 14.5). Consider, the forward and reverse transitions occurring in the closed 
loop, namely, 1→ 2→ 3→ 1 (forward), and, 1← 2← 3←1 (reverse). The respective probabilities for the transi-
tions are given by,
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The Kolmogorov criterion states that in the presence of microscopic reversibility, the two probabilities 
should be equal, i.e.,
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The above condition (Eq. (14.17)) imposes constraints on the values of rate constants in the KPR network. 
Note, in the absence of the KPR step (Figure 14.5b), the probability of the transition in the forward (1→ 2→ 
3→ 2→ 1) direction is equal to that in the reverse (1← 2← 3← 2← 1) direction regardless of the values of the 
rate constants. In this case,
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Thus, the possibility of the breakdown of the detailed balance condition is tied to the presence of loop 
structures in the graphs representing the chemical reaction kinetics. The presence of microscopic reversibility 
implies the presence of the detailed balance condition in the kinetics, which gives rise to Boltzmann distri-
butions in the steady state, i.e., pi ∝ exp(Φi), where, Φi is a potential function. Below we derive an important 
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equality, which we will use to derive the Boltzmann distribution for the probabilities {pi} in the next section. 
The presence of microscopic reversibility in the closed loop 1-2-3-1 (Figure 14.5a) demands,
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The last equality in Eq. (14.18) shows that in the presence of microscopic reversibility or the detailed 
balance condition the ratio of the probabilities for transitioning from 1→ 2 and the reverse (2→ 1) does not 
depend on the specific path taken to execute the operation, i.e., path independence of the ratio. This simple 
result has a profound implication. The path independence implies that the ratio can only depend on the start 
and the end states and not on the states in between which allows us to write the ratio as using functions (or 
“potential energies”) that depend on the start and the end states alone.

14.9.1 � Boltzmann distribution as a result of the detailed 
balance condition in the kinetics

It is now easy to derive that when the detailed balance condition in Eq. (14.18) is obeyed {pi} would 
always follow a Boltzmann distribution, i.e., pi ∝ exp(Φi) or pi/pj = exp(Φi–Φj) (i≠j). For our simple 
example (Figure 14.5) we can show p1/p3 is given by a Boltzmann distribution by calculating p1 and p3 
at the steady state using the solution obtained by the graphical method (Eq. 14.16). Consider the terms 
contributing to p1 and p3 in Eq. (14.16) (Figure 14.8).
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The path independence of Πj
i, which is only valid when the detailed balance condition holds, is used for 

writing down the third equality in the above equations.

Therefore, p Z U t
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∑ .  Similarly one can also show, p e p2 3
2 3= −Φ Φ .  

The equalities in Eq. (14.19) can be generalized to any complex stochastic networks.

14.9.2 �E ntropy production and quantification of dissipation

The chemical reaction networks, e.g., the KPR network, interact with the local environment. The interaction 
can arise due to reactions associated with the KPR consuming the energy generated by ATP hydrolysis. Some 
of this energy is irreversibly lost or dissipated as the reactions proceed. The breakdown of the detailed balance 
condition leads to a continuous dissipation of energy even in the steady state where the probability distribu-
tions of the copy numbers of molecules in different states do not change with time (Das, 2016). The dissipation 
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can be quantified by the entropy production. The precise relationship between energy dissipation and entropy 
production has been a subject of intense research in the recent years (Ge and Qian, 2010; Jarzynski, 2011).

The entropy of the system or the system entropy is defined as, Ssys = –∑i pi(t)ln[pi (t)] (Imparato and Peliti, 
2007; Schnakenberg, 1976; Seifert, 2012; Zia and Schmittmann, 2007), where the sum over i can also represent 
a sum over single cells in a cell population (or an ensemble of stochastic trajectories). Ssys follows the kinetics 
(Imparato and Peliti, 2007; Schnakenberg, 1976; Seifert, 2012; Zia and Schmittmann, 2007),
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According to Eq. (14.20), the entropy Stotal never decreases (Imparato and Peliti, 2007; Seifert, 2012), i.e., 
dStotal/dt ≥ 0, and thus quantifies dissipation in the system. In the steady state, dSsys/dt = 0, and, consequently, 
dStotal/dt = dSmed/dt. dSmed/dt denotes the rate of entropy exchange between the system and the reservoir.
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When the detailed balance condition is obeyed the right hand side of Eq. (14.21) vanishes. This implies that 
dStotal/dt vanishes as well in this situation, i.e., the total entropy of the system (Stotal) does not change. Thus, the 
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Figure 14.8  Relation between the directed graphs contributing to p1 and p3. The edges pointing in the oppo-
site directions in the sub graphs for p3 in comparison to that p1 are shown with dashed lines with arrowheads. 
The U(tα(i)) terms for the graphs are shown below the respective graphs.
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system kinetics does not generate any dissipation. Its easy see how the detailed balance condition will lead to 
the vanishing of dSmed/dt. We will show this graphically by using the solution (Eq. (14.16)) of the Master equa-
tion derived in the previous section. Consider the graphs (Figure 14.9) that correspond to the first term in Eq. 
(14.21). Visual inspection of Figure 14.9 shows that the contribution of w3

1p3 matches exactly with w1
3p1 when 

the Kolmogorov criterion in Eq. (14.17) is obeyed (see Figure 14.9 and the legend for details). This renders the 
first term zero. Similarly, it can be easily shown that the other terms in Eq. (14.21) vanish in the presence of 
the detailed balance condition.
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15

Modeling and inference of cell population 
dynamics

MICHAEL FLOSSDORF AND THOMAS HÖFER

15.1 � INTRODUCTION: MODELS OF CELL POPULATION 
DYNAMICS AND PARAMETER IDENTIFIABILITY

Compartment models are the most common approach for describing the dynamics of immune cell popula-
tions. Compartments are distinguished by cell type (e.g., naïve, effector, and memory T cells) or/and spatial 
location (e.g., spleen, lymph nodes, and effector sites). The processes connecting compartments are cell dif-
ferentiation (for cell-type compartments) and migration or transport (for spatial compartments). Within the 
compartments, cell proliferation and death may take place. Thus, the cell number in compartment of type i, 
ni, is governed by a differential equation of the general form

	
d
d
n
t

j ni
i i i i i= − + −( )α δ λ

	
(15.1)

where ji is the influx (by immigration of cells or differentiation of precursor cells giving rise to type i), 
λi and δi are the per capita rates of cell proliferation and death, respectively, and αi is the per capita rate 
of onward differentiation or spatial efflux (Figure 15.1). In general, these rates are not constants but are 
affected by the cell numbers in the system and by external stimuli. This regulation is mediated by cell-
contact-dependent or soluble signals, such as cytokines, or by competition for common resources. Hence, 
population dynamic models that take these regulatory effects into account consist of systems of nonlinear 
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differential equations. Nevertheless, for many practical applications, the approximation of constant rates is 
appropriate. Then the differential equations become mathematically simple: they are linear with (usually) 
constant coefficients. However, even in this case, the inference of rates from data is often a formidable prob-
lem. This can be readily appreciated by recognizing that proliferation, death, differentiation, and export 
rates all enter a single effective rate constant, ki = αi + δi − λi, and thus straightforward measurements of 
the cell number over time, ni (t), will not suffice to separately identify the parameters making up ki. In the 
context of steady-state hematopoiesis, Busch et al. (2015) have termed 1/ki the residence time of a compart-
ment because it provides a theoretical estimate for the time taken by the compartment to run dry if its 
influx were switched off.

In this chapter, we will systematically introduce approaches for parameterizing population-dynamic 
models of the form of Equation 15.1. We will emphasize the information on parameters contained in differ-
ent kinds of experimental data. Indeed, statistically sound parameterization of population dynamic models 
will usually benefit from careful planning of the corresponding experiments. In this context, we will empha-
size the importance of measuring absolute numbers of the cell types of interest, in addition to the more 
customary measurements of cell-type frequencies readily made by flow cytometry. The numbers of cells of 
different types and their changes over time are more informative on the causes of these changes than mere 
cell-type frequencies. The chapter is broadly divided into two parts: first considering deterministic models 
for measurements of average cell numbers followed by stochastic approaches for addressing single-cell-based 
fate-mapping data. The emphasis is on methodology; we will briefly review biological insights gained, but for 
more in-depth information in this regard, we refer the reader to the literature cited. A recurring idea is that 
the accurate identification of parameters for a given model will often also allow one to discriminate between 
alternative models for a given system, thus gaining mechanistic insight that extends beyond mere model 
parameterization.

15.2 � IDENTIFYING RATES FROM POPULATION-LEVEL DATA

15.2.1 �I ntroduction

Deterministic models describing average cell numbers, as exemplified by Eq. 15.1, are the most common type 
of population dynamic models in practical applications. This is foremost due to the fact that most experimen-
tal measurements sample cell populations. However, techniques for analyzing clonal progenies of individ-
ual precursor cells are increasingly becoming available (Buchholz et al. 2016), and associated mathematical 
approaches will be discussed in Section 15.3. Two principal situations can be distinguished: (1) The system 
overall is in steady state; that is, the cell numbers in the compartments of interest do not change in time. 
(2) The system is in a transient state, with at least some cell numbers changing. We will consider prototypical 
examples of steady state and transient dynamics: the formation of blood cells during unperturbed hematopoi-
esis in the healthy adult organism and the response of T cells following an acute infection.

λ

δ
∅

j

α1

α2

Figure 15.1  Basic processes determining the dynamics of cell numbers in a compartment of interest (round 
cell): Influx j; proliferation rate λ, differentiation rates α, and loss (death) rate δ. If the compartment represents 
a branch point in a lineage differentiation pathway, there is more than one differentiation rate (here: into two 
different cell types symbolized by square and hexagon). Thus, the inference of the corresponding differentia-
tion rates α1 and α2 from the data also carries information on the topology of the pathway.
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15.2.2 �P arameter inference from measuring absolute cell 
numbers over time: T-cell immune responses

During the course of an adaptive immune response, antigen-specific T lymphocytes expand massively and 
diversify into distinct functional subsets that are distinguished using cell-surface markers. In particular, 
short-lived effector cells develop that kill, and help other cells killing, the invading pathogen, whereas 
long-lived memory cells provide protection against reinfection by the same pathogen. The population of 
memory T cells further subdivides into functionally distinct subsets. Central memory T cells recirculate 
through secondary lymphoid organs and proliferate vigorously upon rechallenge, while effector memory 
T cells reside in peripheral organs and can mount immediate effector function following stimulation. A 
key question concerns the developmental pathways by which short-lived effector cells and precursors of 
memory cells emerge out of the pool of activated naïve cells (see Section 15.3). As an example, we will here 
consider a very simple two-population version of the so-called progressive differentiation model in which 
the central memory precursor subset (CM) develops first and then gives rise to T cells of effector function 
(E) (Buchholz et al. 2016; Gattinoni et al. 2017). For clarity, we make the simplifying assumption that the 
activation of naïve T cells is so fast that its kinetics need not be considered explicitly. During the expan-
sion phase of the T-cell response, we can further assume exponential growth leading us to the following 
dynamic equations:

	
d

d
CM

CM CM CM CM
n

t
n= − −( )λ δ α

	
(15.2.1)
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(15.2.2)

where we made use of the nomenclature introduced in Equation 15.1.
A common technique to experimentally assess cell dynamics in vivo is the adoptive transfer of genet-

ically labeled cells. At various time points post transfer, the heritable labels are used to distinguish 
the progeny of the transferred cells from the endogenous cells of the recipient. Examples for such labels 
comprise allelic variants of surface markers distinguishable by flow cytometry and genetic barcodes that 
can be identified by DNA sequencing. Experiments of the first kind have been used extensively to study 
the dynamics of activated T cells responding to an infection. To understand how such measurements can 
be used to study T-cell responses on a quantitative basis, the explicit solution of Eqs. 15.2.1 and 15.2.2 
is illustrative. Defining the effective proliferation rates to be λ λ δ αCM

eff
CM CM CM= − −  and λ λ δE

eff
E E= − , we 

find
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(15.3.2)

where nCM,0 is the initial central memory precursor compartment size, i.e., the number of those naïve T cells 
that successfully engrafted following transplantation and got recruited into the immune response at t = 0. 
As expected, the solution is not explicitly dependent on proliferation or death rates but only on differences 
between the two—the effective proliferation rates. In particular, time-resolved measurements of the absolute 
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cell numbers in the CM compartment allow us to assess both the initial compartment size nCM,0 and the effec-
tive proliferation rate of this compartment (Eq. 15.3.1).

The growth of the effector compartment at large times t1/ λ λCM
eff

E
eff−( )  depends on whichever effective 

proliferation rate is bigger (Eq. 15.3.2). In the case that λ λCM
eff

E
eff<  (which is the case for cytotoxic T cells; Buchholz 

et al. 2013), we can use measurements at such time points to estimate λE
eff  and the factor F = −( )α λ λCM CM

eff
E
eff/ , 

which effectively enables us to estimate all parameters of Eqs. 15.3.1 and 15.3.2. On the other hand, if λ λCM
eff

E
eff> , the 

effector compartment will asymptotically be growing proportional to e tλCM
eff

 (which we already know from the 
nCM(t) data). In this case, kinetic measurements of the number of effector cells nE(t) at relatively late time points 
would not be informative on the proliferation rate of this compartment but only yield additional information on 
F. Thus, for λ λCM

eff
E
eff> , an independent estimation of λE

eff  and αCM based just on cell numbers at late time points 
in the response is not possible (see below for a quantitative estimate of “late”). If one, nevertheless, attempted 
parameter estimation from such data, one would find variable estimates for λE

effand αCM, with (negative) cor-
relations such that the estimate of F stays approximately constant. This example illustrates that the identifi-
ability of rate parameters from a given set of data may depend on the actual values these parameters have: 
For λ λCM

eff
E
eff< , both central memory precursor and effector net proliferation rates and the differentiation rate 

are identifiable from time course measurements of the cell numbers in the two compartments, whereas for 
λ λCM

eff
E
eff> , this is not the case if the data are measured at too late time points.

To understand whether data measured at earlier time points t < −( )1/ λ λCM
eff

E
eff  add information on the 

parameters, it is useful to consider the relative size of the CM compartment:
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where we defined ∆λ λ λeff
CM
eff

E
eff= −  as the excess proliferation rate of the first compartment (CM). Note that 

for cytotoxic T cells in practice, λ λCM
eff

E
eff<  (Buchholz et al. 2013), but for other cases of one cell compartment 

giving rise to another, Δλeff may indeed be positive. In this latter case (Δλeff > 0), both compartments approach 
a constant cell number ratio at late time points, ρCM(t) ≈ 1/(1 + F). The speed with which this proportionality 
is reached contains information about Δλeff. Therefore, measurements at both early and late time points are 
pivotal to identify all kinetic parameters when the precursor compartment proliferates faster than the prod-
uct. Note that Eq. 15.4 is true irrespective of λCM

eff  being bigger or smaller than λE
eff . In the latter case, which 

we discussed before, early time point data also provide additional information about F and Δλeff, resulting in 
more precise estimates of all parameters.

What are “early” and “late” time points in practice? Buchholz et al. (2013) give approximately λCM
eff = 0 8.  

per day and λE
eff = 1 6.  per day for an acute immune response to Listeria presenting the SIINFEKL peptide 

to OT-I T cells. Hence, 1 1 25/ .λ λCM
eff

E
eff− =  days. Experimental measurements of T-cell immune responses 

in vivo at such early time points after pathogen challenge are very rare, due to the small cell numbers that 
would need to be recovered from the experimental animal, but would be informative in quantitative terms.

In general, differentiation between the two compartments may not be unidirectional. Our simple model 
can still be treated analytically if a “backward” differentiation rate αE from E to CM is introduced:

	 n t e e e
t r t r t

CM CM CM
eff

E
eff
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where r = +4
2

α α λCM E
eff∆ . Interestingly, αE only enters these equations through the lumped rate param-

eter r (this asymmetry with αCM is due to the initial condition nE(0) = 0). For t ≪ 1/r, Taylor expansion shows 
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that the absolute cell numbers of both compartments no longer depend on r, implying that measurements at 
both early and late time points are necessary to estimate the model parameters including αE.

Population dynamic models are usually more complex than the two-compartment model discussed 
here. However, the analytical insights afforded by this simple example illustrate several points of practical 
importance. First, parameter identifiability depends on the available data, and the selection of time points for 
the measurements can be critical. For assessing parameter identifiability in practice, the profile likelihood 
method is a useful tool (Venzon and Moolgavkar 1988; Raue et al. 2009). Second, cell number measurements, 
in addition to relative compartment sizes, are key to parameter estimation. For practical purposes, it can be 
beneficial to explicitly use relative compartment sizes in the parameter estimation procedure due to their 
usually small measurement error when determined by flow cytometry, complemented by separate measure-
ments of the total cell number. It is intuitively clear that proliferation rates cannot be determined without 
knowing time courses of cell numbers. However, even the inference of differentiation rates generally requires 
such information. To illustrate this point, we note that Equation 15.4 reduces to ρ α

CM
CM( )t e t= −  only if the 

difference between proliferation and death rates is equal for both compartments (and αE = 0), so that in this 
special case, αCM could be estimated from the fraction of progenitor (CM) cells. However, in general, ρCM(t) 
will also depend on Δλeff (and αE).

15.2.3 �C ell-cycle-dependent labels

In this section, we will briefly introduce two experimental techniques that are commonly used to quantify 
cell division of lymphocytes in vivo. For a more thorough discussion of the quantification of lymphocyte 
turnover, see the review by De Boer and Perelson (2013). The first technique is based on oral administration 
or injection of bromodeoxyuridine (BrdU), which is an analogue of the DNA nucleoside desoxythymidine. 
Following its incorporation into newly synthesized DNA, BrdU can be detected in cells that recently divided, 
using antibody staining and flow cytometry. As long as BrdU is available, every unlabeled cell results in two 
labeled daughter cells. This results in the following model for the dynamics of the number of BrdU labeled (nL) 
and unlabeled (nU) cells during the labeling phase:

	
d
d

U
U

n
t

n= − +( )λ δ 	 (15.6.1)

	 d
d

L
U L

n
t

n n= + −2λ λ δ( ) 	 (15.6.2)

Here λ denotes the proliferation rate and δ denotes the loss rate from the compartment under consideration 
(sum of death, onward differentiation, and emigration rates). For the fraction of BrdU-positive cells f + = nL/
(nL + nU), one then obtains

	 d
d
f
t

f
+

+= −2 1λ( ). 	 (15.7)

Considering that f +(tL) = 0 at the time point of labeling tL, this is solved by

	 f e t tL+ −= −1 2λ( ). 	 (15.8)

If the labeling duration is small compared to the mean interdivision time 1/λ, the fraction of BrdU-positive 
cells grows linearly with time: f + ≈ 2λ(t − tL). Thus, the fraction of labeled cells is independent of loss rates, and 
its measurement allows direct inference of the proliferation rate. Possible complications that we neglected 
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here include the fact that, depending on the availability of BrdU, not all cell divisions might result in labeled 
daughter cells and that the concentration of BrdU will not be constant over time (De Boer and Perelson 2013). 
During delabeling, the BrdU label gets halved with every division, resulting in a decline of the measured 
fraction of BrdU-positive cells f   + that is dependent not only on the proliferation rate but also on the threshold 
BrdU intensity below which a cell is detected as BrdU negative (Ganusov and De Boer 2013). A fine detail of 
interpreting BrdU labeling data relates to the fact that BrdU given over a certain time period labels cells that 
are initially already in the S phase of the cell cycle and cells that enter the S phase during this period. Strictly 
speaking, only the latter are relevant for estimating the proliferation rate, and dual pulse labeling, using dis-
tinguishable desoxythymidine analogues (such as BrdU and EdU; Bradford and Clarke 2011), may give more 
accurate results.

Another widely used technique to monitor lymphocyte proliferation is based on carboxyfluorescein suc-
cinimidyl ester (CFSE), which is a fluorescent dye that irreversibly enters cells and then becomes diluted 
approximately twofold upon cell division (a number of further dyes of this kind are available). For T cells, 
up to seven to eight divisions can be identified by measuring the CFSE intensity of individual cells before the 
fluorescence intensity gets indistinguishable from the autofluorescence background. This results in experi-
mental estimates for the number of cells ni in each generation. For a simple proliferation–death model, the 
corresponding dynamical equations read

	 d
d
n
t

n0
0= − +( )λ δ 	 (15.9.1)

	 d
d
n
t

n n ii
i i= − + = …−2 1 21λ λ δ( ) . , , 	 (15.9.2)

Iteratively solving these differential equations yields for the fraction of cells in each generation:

	 f t
i

ei

i
t= −( )

!
.2 2λ λ 	 (15.10)

Thus, the relative number of cell divisions in this model is Poisson-distributed with mean 2λt. For more com-
plicated population dynamic models, CFSE and BrdU data contain information that helps to disentangle cell 
division and death rates.

Several other labels that are taken up by cells and then diluted by cell divisions have been used for esti-
mating cell proliferation rates, including stable isotypes (e.g., deuterated water or deuterated glucose, both of 
which can be used with human subjects; Ahmed et al. 2015) or fluorescently tagged histones expressed from 
a transgene in mice (Foudi et al. 2009). A specialty of T cells exploited for estimating proliferation rates are 
T-cell receptor excision circles (TRECs), small DNA circles generated through the recombination of the T-cell 
receptor genes in the thymus that are subsequently not replicated. Combining stable isotype labeling and 
TREC dynamics, den Braber et al. (2012) quantitatively defined the role of thymic output for maintaining the 
naïve T-cell compartment in juvenile and adult mice and humans.

15.2.4 �S teady-state dynamics: Hematopoiesis

Unlike acute immune responses, where lymphocyte numbers grow over time, during maintenance mode, 
cellular compartments are approximately in a steady state, which is determined by the balance of cell influx, 
proliferation, and loss. To provide a concrete example, we consider hematopoiesis—the process by which 
hematopoietic stem cells (HSCs) give rise to a plethora of blood and immune cell types. Cell differentiation 
from HSCs to mature cells proceeds through various progenitor cell states during which cell numbers are 
amplified to meet demand. To illustrate this, consider an adult mouse, which has of the order of 104 HSC in 
the bone marrow and overall about 107 granulocytes. Granulocytes are very short-lived leukocytes that are 
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pivotal to the innate immune defense; they have an average lifetime in the blood of less than 1 day [accurately 
determined in humans (Lahoz-Beneytez et al. 2016) but likely to be similar in the mouse]. Hence, a mouse 
should produce of the order of 10 million granulocytes every day, or about 100 granulocytes per second. 
This production rate could not be sustained directly by 10,000 HSC and requires intermediary amplifying 
compartments. Cell production rates for humans are naturally even larger. For example, humans have of the 
order of 1013 erythrocytes (Bianconi et al. 2013), with a lifetime of 100–120 days. Hence, we need to produce 
approximately 106 new red blood cells per second (HSC numbers in humans are not well known, but may, in 
fact, not be so different from the numbers in mice; Abkowitz et al. 2002).

Quantitative considerations on overall hematopoietic productivity have been made in considerable detail 
(Mackey 2001). However, experimental tools for measuring the activity of unperturbed hematopoietic stem 
and progenitor cells, producing downstream progeny in the adult bone marrow, have only recently become 
available (Busch et al. 2015). The key idea is to label HSC, using a genetically heritable label that is passed on to 
all progeny of a labeled HSC without dilution, theoretically over an infinite number of generations (contrast-
ing with proliferation-dependent labels discussed in Section 15.2.3). Sophisticated, noninvasive techniques 
for generating such heritable labels in specific cell types have been developed to map the fate of cells in devel-
opment and establish precursor–product relationships (reviewed for hematopoiesis in Höfer et al. 2016a). 
Busch et al. (2015) have developed a mathematical approach to derive differentiation and proliferation rates 
from such fate-mapping data. Here we consider a typical experiment that measures labeled cells in successive 
compartments i = 0,1,2, …, e.g., the label is introduced in HSC (i = 0) and then propagates to progenitor cell 
stages (usually referred to as short-term HSC or ST-HSC, i = 1, multipotent progenitors or MPP, i = 2, and so 
on). Downstream of ST-HSC, there is a fundamental branching in this differentiation pathway between lym-
phoid development (yielding T, B, and NK cells) and erythromyeloid development. For the moment, we dis-
regard branching, yielding the following basic equations for the cell numbers in the different compartments:

	 n t0( ) .= const 	 (15.11.1)

	 d
d
n
t

n ni
i i i i i i= − + −− −α α δ λ1 1 ( ) , 	 (15.11.2)

where the HSC number is taken as conserved. It turns out that the propagation dynamics of the fate-mapping 
label do not suffice to separately identify proliferation rates λi and death rates δi; hence we define

	 β λ δi i i= − 	 (15.12)

as the net or excess proliferation. For adult mice, Eqs. 15.11.1 and 15.11.2 can be considered to be in steady 
state, dni/dt = 0, yielding
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	 (15.13)

Note that the cell number ratio between a precursor–product pair of compartments (left-hand side of 
Eq. 15.13) can be measured by flow cytometry; this measurement constrains the values the rate parameters 
can take.

At t = 0, heritable label is introduced in the HSC, and hence the labeled cells are not in steady state. They 
obey

	 n t0
*( ) .= const 	 (15.14.1)
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Note that the rate constants are not altered by the presence of the label. Absolute cell numbers from the bone 
marrow cannot easily be measured with high accuracy, whereas the labeling frequency, the ratio of labeled to 
unlabeled cells f n ni i i= */ , can. Using this definition and Eq. 15.13, we find from Eq. 15.14 the label propaga-
tion equation:

	 d
d
f
t

f fi
i i i i= − −−( )( ).α β 1 	 (15.15)

It implies that the labeling frequency in the product compartment will equilibrate with the labeling frequency 
in the precursors. Therefore, eventually, the entire hematopoietic system derived from the HSC should attain 
the labeling frequency that was initially induced in the HSC. The characteristic time for the equilibration 
depends only on the parameters of the product:

	 τ
α βi

i i
=

−
1 . 	 (15.16)

The residence time τi (Busch et al. 2015) provides a measure of the degree of self-renewal in the compartment. 
A compartment with a large residence time can almost compensate cell loss (by onward differentiation and 
death) through proliferation, whereas a compartment with a small residence time depends predominantly on 
cell influx from its precursor.

Consider the deviation of the label frequency from its steady-state value relative to the HSC labeling 
frequency:

	 ϕi
if

f
= −1

0
.

The characteristic waiting time for the label accumulation in the ith compartment can then be defined as
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The delay for label accumulation in a downstream compartment is given by the sum of the residence times 
along the differentiation pathway. In particular, a nearly self-renewing compartment presents a bottleneck for 
the propagation of fate mapping label.

Eqs. 15.13 and 15.15 form the basis for the inference of the steady-state parameters, differentiation rates αi, 
and net proliferation rates βi, from time-resolved fate mapping data (Busch et al. 2015). The measurement of 
labeling frequencies over time, fi(t), allows the determination of τi and hence the self-renewal capacities of the 
measured compartments in steady state. Together with additional data on the cell number ratios (Eq. 15.13), 
the label propagation data yield estimates of αi and βi. Busch et al. (2015) derive these rates, together with 
the flux ratio at the branch point between erythromyeloid and lymphoid developmental pathways from 
experimental data. In adult mice, HSCs contribute only rarely to differentiated progeny during unchallenged 
hematopoiesis—on average about once in 3–4 months. Accordingly, progenitor compartments immediately 
downstream of HSCs are very close to self-renewal in unperturbed hematopoiesis. Unperturbed hematopoi-
esis differs from the dynamics of the system after transplantation in important aspects (Busch and Rodewald, 
2016; Höfer et al. 2016a). Recent experimental advances now allow the noninvasive barcoding of single HSC 
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in situ (Pei et al., 2017), thus setting the stage for applying model selection approaches to hematopoiesis that 
are described in Chapter 3.

15.3 � SINGLE-CELL-BASED FATE MAPPING AND MODEL 
SELECTION

15.3.1 �I ntroduction

Thus far, we have been concerned with the inference of rate parameters from experimental data, where the 
connections between compartments were given (principally by differentiation rates or migration). However, 
there are many areas of research where the “topology” of lineage differentiation and migration pathways 
itself is under study (e.g., Buchholz et al. 2013; Perié et al. 2014). Rate inference and study of lineage topology 
are related. Consider, for example, a situation where a cell compartment i forms a branch point from which 
several differentiation pathways into distinct lineages emerge. Equation 15.1 then becomes

	
d
d
n
t

j ni
i ij i i

j
i= − + −( )∑ α δ λ .

Thus, if one could infer from data which differentiation rates αij are nonzero, one would, at the same time, 
deduce lineage pathways. Recent theoretical work has addressed new experimental techniques that allow 
the measurement of cell numbers emerging from single labeled progenitors, here called single-cell progenies 
(Buchholz et al. 2013). These data contain information on both rate parameters and lineage topologies.

15.3.2 �A dded value of single-cell progeny data

The cell numbers of single-cell progenies contain valuable information on the underlying differentiation and 
proliferation dynamics. As an example, consider again a simple birth-and-death process in which cells divide 
and die with constant rates λ and δ, respectively. If there are n0 cells at time point zero, then the mean value 
follows a simple exponential growth:

	 µ λ δ= −n e t
0

( ) . 	 (15.19)

Thus, as we already saw in Section 15.2.2, only n0 and the difference between proliferation and death rates 
can be identified by measurements of the time evolution of the mean population size. However, evaluating 
single-cell progeny statistics beyond the mean yields more information. For example, the coefficient of varia-
tion (CV) for the cell numbers reads for t ≫ 1/(λ − δ)
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λ δ
λ δ
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and the probability of extinction is
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(e.g., Bharucha-Reid 2010). Measurements of CV or P0 together with the dynamics of the mean cell number 
allow separate identification of λ and δ.

However, initial population sizes in the experiments other than one imply two important complications. 
First, the effect of experimental noise on CV or P0 becomes harder to evaluate. Second, if n0 is not constant, 
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but itself a random number, then Eq. 15.20 still holds when n0 is replaced by its mean, whereas both the CV 
and the probability of extinction will depend on higher-order properties of the n0 distribution. For transplant 
experiments of labeled cells, this means that the—generally unknown—experimental variability in the num-
ber of engrafted cells constitutes a confounding factor and usually precludes the use of measured CV or P0 
for parameter estimation.

This problem can be appreciated by considering the measured overall variability in the absolute cell 
number, quantified by the coefficient of variation CVT, which contains contributions both from the vari-
able number of engrafted cells (CVE) as well as the stochasticity of the underlying proliferation model 
(CVS):

	 CV CV CVT E S
2 2 2= +

For the same reason, the pairwise correlations between the absolute cell numbers of cellular progenies in two 
compartments cannot be utilized for parameter estimation when n0 is distributed. By contrast, if it can be 
ensured that all measured progenies arise from a single cell, we will see in the next section that such correla-
tions offer rich information about the underlying differentiation process.

The above arguments generalize to more realistic models of cell population dynamics where the coefficient 
of variation and P0 (among other quantities) have been successfully utilized for parameter estimation and 
model discrimination using in vivo single-cell-based fate mapping (Buchholz et al. 2013; Kaiser et al. 2013; 
Perié et al. 2014).

15.3.3 �I llustrative example: Branched versus linear 
differentiation pathways

As perhaps the simplest example of lineage topology, we consider two schemes, a branching pathway and a 
linear pathway, connecting three cell subsets A, B, and C (Figure 15.2a). Suppose we would like to distinguish 
between these alternatives experimentally. Figure 15.2b illustrates that mean value kinetics, even if measured 
nearly continuously, are not informative on the question of pathway topology: The differentiation and prolif-
eration rates of both models can be chosen in such a way that they generate almost identical dynamics of the 
mean absolute cell number in each subset. In particular, in this example also the cell division rates of both 
models are similar; hence, proliferation monitoring (see Section 15.2.3) would not help discriminate between 
these two lineage topologies.

By contrast, consider the outcome of two hypothetical single-cell-based fate-mapping experiments 
depicted in Figure 15.2c. Shown are the pairwise correlations between the absolute cell numbers of the three 
subsets at a single time point for the linear (upper row) and branched (lower row) pathways. These data were 
simulated using the same parameters as in Figure 15.2b; specifically, the proliferation rate of cell type A is 
smaller than those of B and C, which were chosen to be similar. For the linear differentiation model, this 
hierarchy of proliferation rates implies a strong correlation between the cell numbers of cell types B and C, 
while the compartment size of subset A is almost uncorrelated with the other two subsets. On the other hand, 
for the branched pathway model, the small correlations between the cell numbers of subsets A and B as well 
as between A and C imply an even smaller correlation between B and C. This example illustrates how single-
cell progeny data, even if measured only at a single time point, can be used to discriminate between different 
pathway topologies (Höfer et al. 2016b).

15.3.4 �CD 8+ T-cell diversification during acute immune 
responses

Buchholz et al. (2013) applied these ideas on single-cell progenies to infer the pathway of the diversifica-
tion of cytotoxic T cells into memory precursor subsets and short-lived effector cells; for further work on 
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hematopoietic differentiation pathways and bacterial infection dynamics, see Perié et al. (2014) and Kaiser 
et al. (2013), respectively. The experimental data report the numbers of central memory precursors (TCMp, 
identified as CD27+ CD62L+ activated T cells), effector memory precursors (TEMp, identified as CD27+ 
CD62L– activated T cells), and short-lived effector cells (CD27– CD62L– T cells) in single-cell progenies at day 
8 of an immune response to Listeria monocytogenes, an intracellular bacterium, in mice. The used bacteria 
are genetically engineered to express the protein ovalbumin (OVA), and the tracked cytotoxic T cells carry a 
T-cell receptor that is specific for an OVA-derived peptide (OT-I T cells). The data show great variability in cell 
numbers (over four orders of magnitude) and, at the same time, characteristic correlations between certain 
subsets (Figure 15.3a).

To rationalize these single-cell progeny data, Buchholz et al. (2013) set up a stochastic model of the popu-
lation dynamics, writing a master equation for the probability P(nCMp, nEMp, nEF) to find nCMp TCMp cells, nEMp 
TEMp cells, and nEF effector T cells within a progeny at a given time:

	 d
dt

P M P= ( , ) .α λ 	 (15.22)

The transition matrix M depends on the vectors of proliferation and differentiation rates λ and α, respec-
tively. The authors assumed constant, subset-specific proliferation rates. The number and identity of dif-
ferentiation rates depend on the assumed differentiation pathway connecting the initial naïve cell from 
which a progeny arises and the three activated subsets. Standard theory shows how the subset means (μCMp, 
μEMp, μEF), coefficients of variation (CVCMp, CVEMp, CVEF), and pairwise correlation coefficients (CCCMp,EMp, 
CCCMp,EF, CVEMp,EF) are obtained by solving a system of ordinary differential equations. Thus, estimates for 
the rate parameters, including profile-likelihood-based confidence bounds, were obtained by minimizing 
an objective function based on means, coefficients of variation, and correlations. This efficient approach at 
parameter estimation for the stochastic dynamical system (Eq. 15.22) allowed the authors to systematically 
examine all possible lineage topologies that generate all three subsets from a naïve precursor (as borne out 
by the data; Figure 15.3b). Remarkably, only two lineage topologies provided reasonable fits to the single-
cell progeny data measured at a single time point, further augmented by a time course of the subset means 
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Figure 15.2  Single-cell-based fate mapping can be used to distinguish between different model topologies. 
(a) Schematic depictions of a linear and a branched pathway topology connecting three hypothetical sub-
sets A, B, and C. (b) Parameters of both models were chosen to generate almost identical mean cell number 
dynamics for all three subsets (upper row: linear pathway; lower row: branched pathway). (c) Pairwise correla-
tions between the absolute cell numbers of the three subsets at a single time point for the linear (upper row) 
and branched (lower row) pathways. Data were simulated using the same parameters as in (b). (Figure redrawn 
from Höfer T et al., Curr Opin Biotechnol 39, 150–156, 2016.)
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(Figure 15.3c); all other topologies were incompatible with the data (for details of the model selection, see 
the original paper). Thus, the single-cell progeny data provide a highly informative basis for model selection. 
Further modeling work has also examined the potential role of asymmetric cell division in subset specifica-
tion (Flossdorf et al. 2015).

The two selected model topologies share as a common feature the early origin of central memory pre-
cursor cells. Indeed the model implies that these memory precursors have the potential to develop further 
into effector memory precursors and short-lived effector cells or develop into central memory cells after 
the acute response has subsided. In this model, central memory T cells can be viewed as a stem-cell-like 
compartment from which memory immune responses are generated. This prediction of stemness has 
indeed been corroborated by elegant transfer experiments of single cytotoxic central memory T cells 
(Graef et al. 2014). Thus, the specification of memory and effector subsets appears to take place by pro-
gressive differentiation, passing through stem-cell-like stages (Buchholz et al. 2013; Restifo and Gattinoni 
2013; Buchholz et al. 2016; Cho et al. 2017). Of note, the traditional effector–memory dichotomy is not 
a fitting terminology for this model, as central memory precursors also display effector properties dur-
ing the acute response. The progressive differentiation model of cytotoxic T-cell subsets has important 
practical implications for adoptive T-cell therapies of cancer and immunodeficiency (Busch et al. 2016; 
Gattinoni et al. 2017).
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Figure 15.3  Progressive differentiation model of cytotoxic T-cell diversification into short-lived effector 
and memory subsets follows from single-cell progeny data. (a) Numbers of central memory precursors 
(TCMp), effector memory precursors (TEMp), and short-lived effector T cells (TEF) in single-cell progenies 
at day 8 after infection of mice with Listeria. The two-dimensional plots emphasize the extent of subset cor-
relations. (b) Unbiased scheme of differentiation pathways, with subset-specific proliferation rates. There 
are 304 distinct subgraphs (differentiation pathway topologies) of the directed graph shown that produce 
all three subsets from a naïve precursor. (c) Fitting all 304 models to the single-cell progeny data and to the 
mean subset size kinetics selects two pathways; their core is the progressive differentiation model naïve 
T cell → TCMp → TEMp → TEF. (Redrawn from Buchholz VR et al., Science 340, 630–635, 2013.)
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Population dynamics of host and pathogens

AMBER M. SMITH, RUY M. RIBEIRO, AND ALAN S. PERELSON

16.1 � INTRODUCTION

Infectious diseases are among the top causes of death and morbidity in the world. The majority of the 
world’s population lives in low-income countries where infectious diseases are the predominant cause 
of death, particularly lower respiratory tract infections (LRTI), HIV/AIDS, tuberculosis, and malaria. 
Worldwide, LRTI are the fourth leading cause of death and HIV/AIDS is the 6th (WHO, 2014). Even in the 
United States, influenza and pneumonia together are the 8th leading cause of death, responsible for over 
50,000 deaths yearly (Heron, 2015).

Understanding the dynamic, of host-pathogen interactions can have a substantial impact in our fight 
against infectious diseases. In this regard, kinetic models are a robust means of analyzing experimental results 
and explaining biological phenomena without testing every scenario experimentally. By considering the 
dynamical interactions of populations of viruses, cells susceptible to infection (“target cells”), infected cells, 
and cells involved in the immune response, various aspects of the biology of infections have been quantified 
and elucidated. This modeling approach, termed “viral dynamics”, has been successfully used in many viral 
infections such as HIV, hepatitis C virus, hepatitis B virus, cytomegalovirus, and influenza virus (Perelson 
and Nelson, 1999; Emery et al., 1999; Ciupe, Ribeiro, and Perelson, 2014; Baccam et al., 2006; Reluga, Dahari, 
and Perelson, 2009). Substantial insights into the dynamics and pathogenesis of these infections have been 
gained through the development of mathematical models that describe host-pathogen interactions, allowing 
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quantification of the rates of virus production and clearance and infected cell lifespans (Ho et al., 1995; Wei 
et al., 1995; Perelson et al., 1996; Perelson et al., 1997; Perelson, 2002; Bonhoeffer et al., 1997). In turn, this has 
facilitated the investigation of treatment strategies and predictions about how quickly drug resistant variants 
appear (Ribeiro and Bonhoeffer, 2000; Ribeiro, Bonhoeffer, and Nowak, 1998). Here, we discuss the power of 
this approach and use influenza viral dynamics and the effect of bacterial coinfection as case studies.

16.2 � BIOLOGY OF INFLUENZA VIRUSES

Influenza viruses are negative sense, single stranded RNA segmented viruses of the orthomyxoviridae fam-
ily (Shaw and Palese, 2013). The influenza A virus (IAV) genome has eight gene segments (PB1, PB2, PA, 
M, NP, NS, NA, and HA) that code for ~12–14 proteins. The HA and NA segments are important antigenic 
determinants because they elicit antibodies that are essential for immunity. There are at least 18 different HAs 
(H1-H18) and 11 different NAs (N1-N11) that define the influenza subtypes, e.g., H1N1, H3N2, or H7N9. IAV 
genome replication occurs in the nucleus of the infected cell, whereas virion assembly occurs at the apical 
surface of the infected cell after sufficient production of the viral proteins. In humans, IAV infects epithelial 
cells of the upper and lower respiratory tract and results in an acute, self-limiting, respiratory illness, charac-
terized by inflammation of the pharynges, trachea, bronchia, and, in some cases, the lower airways.

Influenza viruses cause seasonal epidemics each year between October and April in the U.S. Over 40 mil-
lion (M) individuals are infected each year, which results in ~1M hospitalizations and ~30,000–50,000 deaths 
(CDC, 2015). The illness ranges from mild to severe and is often exacerbated in children, the elderly, and in 
those with underlying health conditions. In contrast with these seasonal epidemics, influenza pandemics 
occur when a new strain with a novel antigenic profile (e.g., new type of HA and/or NA) emerges and infects 
a significant proportion of individuals who are naïve to the new strain. The “Spanish Flu” pandemic in 1918-
1919 is the most deadly influenza pandemic to date with over 40M deaths worldwide (Potter, 1998). While the 
virus itself caused severe primary viral pneumonia, ~95% of the fatalities were associated with secondary bac-
terial infections (Morens, Taubenberger, and Fauci, 2008). More recently in 2009, a novel H1N1 virus infected 
over 60M people in the U.S. (Shrestha et al., 2011) and resulted in ~200,000 deaths worldwide (Dawood et al., 
2012). This strain was associated with lower levels of mortality and secondary bacterial infections (~45% of 
deaths) (Weinberger et al., 2011) than in previous pandemics (Louria et al., 1959; Morens, Taubenberger, and 
Fauci, 2008), but the economic cost was substantial.

Relatively little is known about the time course of IAV infections, how various immune responses con-
tribute to morbidity and mortality, how different IAV strains interact with the host immune response, or how 
the virus interacts with bacterial pathogens. A better quantitative understanding of the dynamics of the virus 
infection and coinfection with bacterial pathogens within the host could contribute to the development of 
better therapeutics and management of the disease.

16.3 � INFLUENZA VIRUS INFECTION KINETICS

16.3.1 � Basic model of viral dynamics

The basic or standard viral dynamics model (see for example (Perelson, 2002; Nowak and May, 2000)) 
describes a virus infection using three state populations: target cells (T), infected cells (I), and free virus (V).

	

dT
dt

= s − dT − βTV 	 (16.1)

	

dI
dt

= βTV− δI 	 (16.2)
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dV
dt

= pI − cV 	 (16.3)

In this model, susceptible cells, called target cells, are supplied at constant rate s, die at per capita rate d, 
and become infected at rate βV. Infected cells are lost at per capita rate δ, virion production occurs at rate p 
per infected cell per day, and virions are cleared at rate c per day. Each of these terms represents multiple bio-
logical processes. For example, cell loss with rate δ can be due to apoptosis, viral cytopathic effects, killing of 
the cell by an immune effector, or loss of the infected state by non-cytolytic effects. In this latter case, the cell 
could again become a target for infection, in which case a term +δI should be added to Eq. (16.1), or the cell 
could become resistant to infection (i.e., refractory) and a new equation for this cell class could be included 
(Pawelek et al., 2012; Saenz et al., 2010).

Numerical solution of these non-linear equations shows that the virus initially grows exponentially, as 
long as the target cell population remains relatively constant. In this case, the growth rate is r0 (i.e., V V er t~ 0

0 ), 
where r0 is the leading eigenvalue of the linearized system at the beginning of infection (with T(0) = s/d, I(0) = 0 
and V(0) = V0). This eigenvalue can be obtained by solving r c r c R0

2
0 0 1 0+ + − − =( ) ( )δ δ , where R0 = βps/cδd 

quantifies the number of infected cells that arise from each infected cell when target cells are not limiting and 
is called the basic reproductive number (Nowak and May 2000). Following the initial period of exponential 
growth, target cells are depleted and the virus reaches a peak before beginning to decline. If s>0 and R0>1, 
then a positive steady state is reached following a period of viral decay (V* = (βps − cδd)/βcδ). This describes 
a persistent infection. However, if target cell regeneration is delayed such that s ≈ 0 prior to clearance of virus, 
then viral loads asymptotically decay according to e−δt (see “Approximate Solutions” below for further expla-
nation) following the peak and the infection is cleared. This describes an acute infection.

Equations (16.1)–(16.3) form the basis of the first simple model used to analyze IAV infection in human 
volunteers (Baccam et al., 2006). To more accurately reflect the underlying biology of IAV infection, two modi-
fications of the basic model are necessary. First, the birth (s) and death (d) rates of target cells are set to 0 due to 
little regeneration and natural loss of target cells during the short time of an acute infection (~1 week). Second, 
to account for the delay in virus production after a cell becomes infected, i.e., an eclipse phase, the infected cell 
class is split into populations of cells that are newly infected and not yet producing virus (I1,) and cells that are 
producing virus (I2). Cells transition between these two classes at rate k. It is assumed that no infected cells 
are lost during the eclipse phase (I1). This can be justified by assuming that these cells have similar properties 
to uninfected cells prior to virus production, i.e., they die at rate d, which is set to 0 in this model. However, it 
is possible that intracellular immune mechanisms can detect infection prior to viral production and lead to 
death of the cell. In this case, a term –δ1I1 should be added to Eq. (16.5) below, where δ1 could be different from δ. 
This model adds biological realism and includes an exponentially distributed delay (with mean duration 1/k) 
between the start of infection and the initial growth of the virus. Other types of delays with different distribu-
tions can also be modeled, for instance by adding more intermediate compartments (Mittler et al., 1998; Holder 
and Beauchemin, 2011) or by using a fixed time delay (Herz et al., 1996). This model has been termed the “target-
cell limited” model and is defined by Eqs. (16.4)–(16.7). The model dynamics are summarized in Figure 16.1a.

	

dT
dt

= − βTV 	 (16.4)

	

dI1
= βTV − kI1dt 	 (16.5)

	

dI2

dt
= kI1 − δI2	 (16.6)

	 dt
dV = pI2 − cV 	 (16.7)
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The model given by Eqs. (16.4)–(16.7) has been used to analyze IAV infection data in vitro and in vivo in 
mice, ferrets, horses, and humans (reviewed in (Smith and Perelson, 2011; Beauchemin and Handel, 2011; 
Boianelli et al., 2015)). Typically, the model is solved numerically and the predicted log10 viral levels (log10 V(t)) 
are fitted to the log10 viral load data to estimate the parameter values. Figure 16.1b shows a representative fit 
of the model to viral load data from the lungs of IAV infected mice (Smith et al., 2011).

Several considerations have to be taken into account in these fits, including sparsity of the data, uncer-
tainty in the parameter estimates, identifiability of the parameters, and the model structure. Parameters are 
often correlated or cannot be defined by the available data. One way to help identify these parameters is to 
use ensemble fitting methods and examine two-dimensional projections of the parameters (see, for example, 
Figure 16.2d) (Smith et al., 2013; Smith et al., 2011). In doing so, it becomes easy to see that the parameters c 
and δ are correlated and the confidence interval for c is large. Although this may seem problematic, robust 
conclusions can still be made (Gutenkunst et al., 2007). However, a thorough investigation of how the model 
solution is affected by changes in the parameter values must be completed. This can be done by performing a 
detailed sensitivity analysis and/or attempting to find an analytical solution.

16.3.2 �A pproximate solutions

Equations (16.4)–(16.7) are nonlinear and cannot be solved analytically. However, approximations can be made 
to linearize the system. Doing so identifies how each parameter affects the kinetics of viral growth and decay 
(Smith, Adler, and Perelson, 2010). This information can then be paired with parameter estimates obtained from 
fitting the model to data, which allows for more robust interpretation of the viral dynamics (Smith et al., 2011).

To find approximate analytical solutions, the observation that the viral dynamics splits into two phases 
can be used. That is, (i) virus grows exponentially during initial infection (Phase I) and (ii) declines expo-
nentially as the infection resolves (Phase II). There is an additional phase between Phases I and II when virus 
growth slows and viral loads peak. The solutions to Phases I and II can be derived by assuming that the target 
cell (T) level, and thus the total number of cells (Z), remains relatively constant with T ≈ T0 → Z(t) = T(t) + 
I1(t) + I2(t) ≈ I1(t) + I2(t) in Phase I; and T ≈ 0 → Z(t) = T(t) + I1(t) + I2(t) ≈ I2(t) ≈ I1(t) + I2(t) in Phase II. This 
linearizes Eqs. (16.4)–(16.7), which can then be easily solved to yield:

	 Phase I: V1(t) = α1eλt	 (16.8)

	 Phase II: V2(t) = α2e−δt + α3e−ct + α4e−kt,	 (16.9)

where λ is the dominant eigenvalue of the linearized system and the αi’s are combinations of the parameters 
(Smith, Adler, and Perelson, 2010). While all model parameters are involved in the initial growth phase, 
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Figure 16.1  Schematic and Output of the Target Cell Limited Model. (a) In the target cell limited model (Baccam 
et al. 2006) (Eqs. (16.4)–(16.7)), target cells (T ) are infected with virus (V ) at rate βV. Newly infected cells (I1) enter 
an eclipse phase and transition to producing virus at rate k. Productive infected cells (I2) produce virus at rate p 
and are cleared at rate δ. Virus is cleared at rate c. (b) Fit of the target cell limited model to viral titer data from 
the lungs of mice infected with influenza A/Puerto Rico/34/8 (PR8). The data and model solution were repro-
duced from (Smith et al., 2011). (a. From Baccam, P. et al., Journal of Virology, 80, 7590–7599, 2006; b. The data 
and model solution were reproduced from Smith, A.M. et al., PLoS Computational Biology, 7, e1001081, 2011.)
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the exponential decay phase is dominated by the smallest of k, c and δ. In most parameter regimes (reviewed 
in (Smith and Perelson, 2011)), the infected cell death rate δ controls the rate of decay. Further, because the 
solution is asymptotically log-linear (i.e., V(t) ≈ Vpe−δt in Phase II, where Vp is the peak viral load), the slope 
of a linear regression can provide an estimate of δ. Each phase lasts for a set amount of time, which can be 
defined as the point when the approximate solutions deviate from the numerical solution by ~10%. In doing 
so, it can be seen that exponential growth lasts for ~2 days (d), followed by a 12-hour (h) intermediate phase 
where growth is slowing down at which point the exponential decay phase dominates until infection resolu-
tion (Smith, Adler, and Perelson, 2010).

16.3.3 �D rug treatment

Currently there are two classes of FDA-approved antivirals used to treat IAV infections: (i) M2 inhibitors 
(M2I), which block the ion-channel activity of the M2 protein and disrupt virion uncoating (Ison, 2011; 
Gubareva and Hayden, 2006) and (ii) neuraminidase (NA) inhibitors (NAI), which block the action of viral 
neuraminidase on the cell surface and prevent virions from budding from the cell (Ison, 2011).

M2Is block successful infection of cells, which can be modeled either by changing the infection rate, β, to 
(1-ε)β or by changing the eclipse phase rate, k, to (1-ε)k. Likewise, NAIs work to block virus production and 
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Figure 16.2  Schematic, Output, and Experimental Validation of the Coinfection Model. (a) In the IAV-SP coin-
fection model (Eqs. (16.19)–(16.23)), the target cell limited model (Eqs. (16.4)–(16.7)) is paired with a pneu-
mococcal model (Eq. (16.18)) by including two interaction terms for bacteria (P) effects and two interaction 
terms for virus (V) effects): (i) an increase in virus production ( ˆ ( )a P aP= z), (ii) an increase in cell death (μP), 
(iii) an increase in the carry capacity (ψV ), and (iv) a decrease in phagocytosis of bacteria ( ˆ( ) ( )φ φV V K V= +/ PV ). 
(b) Fit of the coinfection model to viral and bacterial titer data from the lungs of mice infected with influenza 
PR8 followed 7d later by pneumococcus D39. (c) The dynamics of alveolar macrophages and the correlation 
to the estimate of ϕ. (d) Correlation of the parameter estimates for ϕ and KPV. Each dot represents a value within 
the 95% confidence interval. (From Smith, A.M. et al., PLoS Pathogens, 9, e1003238, 2013. a. From Smith, A.M. et al., 
PLoS Pathogens, 9, e1003238, 2013; b. From Smith, A.M. et al., PLoS Pathogens, 9, e1003238, 2013; c. The dynamics 
of alveolar macrophages: Adapted from Ghoneim, H.E. et al., The Journal of Immunology, 191, 1250–1259, 2013; 
Smith, A.M., and Smith, A.P., Scientific Reports, 6, 38703, 2016. The correlation to the estimate of ϕ: Smith, A.M. et 
al., PLoS Pathogens, 9, e1003238, 2013. The data, model solutions, and parameters were adapted from Smith, A.M. 
et al., PLoS Pathogens, 9, e1003238, 2013 [panels b, c, and d] and Smith, A.M., and Smith, A.P., Scientific Reports, 6, 
38703, 2016 [panel c].)
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can be modeled by changing the viral production rate, p, to (1-ε)p. In both cases, ε describes the effectiveness 
of the drug in blocking the corresponding step of the viral lifecycle and is equal to 0 in the absence of drug and 
to 1 when the drug is 100% effective. Antivirals are typically ineffective if they are administered after the first 
2 d of infection (Hayden, 1996). This is because these processes have little effect during the later stages of the 
infection, as indicated by the Phase II solution in Eq. (16.9) (Smith, Adler, and Perelson, 2010; Smith, 2016).

Even when one of these antivirals is administered early in infection, drug resistance can arise rapidly 
(Perelson, Rong, and Hayden 2012). This is due to the high mutation rate of IAV, the rapid production and 
clearance of the virus, and the plasticity of its genome, which allows the virus to accumulate mutations that 
have little impact on viral fitness and thus may lead to resistance. Indeed, multiple IAV strains that have been 
in circulation are resistant to one or more of the available drugs (Hurt, 2014). To determine the biological 
processes that drive the emergence of drug resistance and assess the rate at which resistant mutants arise, 
classes of viruses that are sensitive to antivirals (Vs) or resistant (Vr) to antivirals can be included and modeled 
by Eqs. (16.10)–(16.16).

	

dT
dt

= − βT (Vs + Vr)	 (16.10)

	

dI1s

dt
= βTVs − ksI1s	 (16.11)

	

dI1r

dt
=  βTVr − kr I1r	 (16.12)

	

dI2s

dt
= ksI1s − δI2s	 (16.13)

	

dI2r

dt
= kr I1r − δI2r	 (16.14)

	

dVr

dt
= (1 + μ) pI2r − μpI2s − cVr	 (16.15)

	

dVs

dt
= (1 − μ) pI2s + μpI2r − cVs	 (16.16)

Here, it is assumed that the drug effect is in blocking the infected cell transition from the eclipse phase (I1) 
to productive infection (I2), and thus resistance is manifested by including different transition rates, ks and 
kr corresponding to the drug sensitive and resistant virus, respectively. The model also includes the possibil-
ity that each virus produced by a cell infected with a drug sensitive virus, I2s, or drug resistant virus, I2r, can 
mutate at rate μ. The model allows for analysis of the relative production of sensitive and resistance viruses 
prior to when the strong effect of selection due to drug is imposed on the system. The relative frequency of 
sensitive and resistant strains within the host can then be calculated before and after drug treatment (Ribeiro, 
Bonhoeffer, and Nowak, 1998).

16.3.4 �I mmune responses

The model in Eqs. (16.4)–(16.7) does a remarkable job of describing the initial growth and control of the virus, 
and has been shown to fit viral titer data quite well in different types of experiments (reviewed in (Smith and 
Perelson, 2011; Beauchemin and Handel, 2011; Boianelli et al., 2015)). This is the case even without including 
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explicit immune responses. However, it is well known that the immune response against IAV infection can 
be vigorous, including several innate and adaptive mechanisms, and is essential in clearing the infection.

Early in IAV infection, infected cells and resident immune cells (e.g., alveolar macrophages) release pro-
inflammatory cytokines and chemokines that limit virus replication and recruit other cells (e.g., neutrophils, 
macrophages, and natural killer (NK) cells) to the infection site (reviewed in (Iwasaki and Pillai, 2014)). 
Within 2-4 d after infection, the innate immune response controls virus replication and signals the adaptive 
response. Cytotoxic T cells enter at ~5-6 d post-infection and work to remove the remaining infected cells 
(reviewed in (Braciale, Sun, and Kim, 2012)).

Specific immune responses can be incorporated into Eqs. (16.4)–(16.7) in various ways, including by allow-
ing parameters to vary as a function of time or as a function of the state variables. Alternatively, additional 
equations for immune cell populations can be included. While different immune responses have been mod-
eled (reviewed in (Smith and Perelson, 2011; Beauchemin and Handel, 2011; Boianelli et al., 2015)), the focus 
here will be on an important component of innate immunity: the type I interferon (IFN-α,β) response. Type I 
IFNs are thought to play a major role in limiting viral replication by three mechanisms (reviewed in (McNab 
et al., 2015)): (i) reducing virus production within infected cells, (ii) interacting with susceptible cells and 
rendering them resistant to infection, and (iii) enhancing the effect of cytotoxic cells that remove infected 
cells. The simplest way to model the effect of IFN in decreasing virus production from infected cells is to 
make the rate of viral production a function of time, p(t). Although the form of this function is unknown, it 
is likely a decreasing function of time. Another way to model the IFN effect is based on the fact that infected 
cells can produce type I IFNs, which means that virus production should decline as the number of infected 
cells and the amount of IFN increases. Thus, p could also be made a decreasing function of the concentration 
of infected cells or the integral over all infected cells.

A more mechanistic way to model the effect of IFN is to write an equation for the concentration of IFN (F),

	 dt
dF = αI2 − dFF	 (16.17)

where α is the rate of IFN production and dF is the rate of IFN decay. Because IFN levels do not begin to rise 
until after virus has surpassed Phase I of exponential growth (~2 d), a time delay (τ) is often included such 
that the equation becomes dF / dt = αI2(t − τ) − dFF (Baccam et al., 2006). The reduction in virus replication in 
infected cells can then be included by changing the viral production rate to p p F= +ˆ/( )1 1ε  and/or the rate of 
exiting the eclipse phase to k k F= +/̂( )1 2ε , where p̂ and k̂ are the rates of these processes in the absence of IFN. 
The efficiency of IFN in inhibiting these processes is reflected by the parameters ε1 and ε2 (Baccam et al., 2006). 
Type I IFNs also act by placing cells in an antiviral state, which can be modeled by including an equation for 
cells refractory to infection (Saenz et al., 2010). IFNs can also enhance the activity of cytotoxic cells, such as NK 
cells, which can be modeled by including an additional death term (i.e., -κI2F) in Eq. (16.6) (Pawelek et al., 2012).

16.4 � BACTERIAL COINFECTION DURING INFLUENZA INFECTION

As IAV infection progresses and immune responses work to clear the virus, host epithelial cells die, inflam-
mation increases, and the respiratory tract is damaged. Bacterial pathogens, like Streptococcus pneumoniae 
(SP) and Staphylococcus aureus (SA), can take advantage of this damage and easily invade the injured lung 
(reviewed in (Smith and McCullers, 2014; McCullers, 2014; Short et al., 2012; Metzger and Sun, 2013)). These 
secondary bacterial infections are a common complication of IAV infections and have accounted for 40–95% 
of influenza-related mortality in past pandemics (Morens, Taubenberger, and Fauci, 2008; Louria et al., 1959; 
Dawood et al., 2012; Weinberger et al., 2011).

IAV-SP coinfection pathogenesis has been extensively studied in the laboratory due to the availability 
of well-characterized animal models (reviewed in (Smith and McCullers, 2014)). These studies have eluci-
dated numerous pathogenic and immunological components that contribute to the acquisition, pathogenic-
ity, and lethality of coinfection (reviewed in (Smith and McCullers, 2014; McCullers, 2014; Short et al., 2012; 
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Metzger  and Sun, 2013)). With such complexity, it is difficult to decipher the role and regulation of each 
identified factor with traditional experimental approaches. In contrast, modeling coinfection dynamics has 
been able to unravel some of the complex host-pathogen interactions and identify important mechanisms 
that drive bacterial establishment after IAV infection (Smith et al., 2013; Smith and Smith, 2016).

Data collected from mice indicates that the maximum lethality from IAV-SP coinfection occurs when the 
bacterial infection is initiated 7 d into the IAV infection (McCullers and Rehg, 2002). This time point is ~2–4 d 
after the virus peak when viral loads are declining (Figure 16.1). Once the bacterial infection begins, viral 
loads rebound briefly and bacterial titers rapidly grow to high levels (Figure 16.2). To investigate the mecha-
nisms that produce these kinetics, Smith et al. (2011) developed a model for pneumococcal infection that 
could then be coupled to a model of IAV infection, such as that in Eqs. (16.4)–(16.7).

16.4.1 �P neumococcal infection kinetics

Pneumococcus is a gram-positive bacterium that often resides in the nasopharynx of healthy individuals 
without manifestation of disease. However, some strains of pneumococci are more virulent and can spread to 
other locations of the body causing pneumonia, meningitis, otitis media, or septicemia. This is particularly 
true when the host is immunocompromised, such as in the elderly or after an IAV infection.

Because this bacterium grows extracellularly, a target-cell limited type of model is not appropriate. Here, 
the immune response needs to be taken into consideration in order to accurately reflect bacterial loads after 
infection and do so for different doses (Smith, McCullers, and Adler, 2011). In the case of pneumococcus, 
alveolar macrophages (AMs) that reside in the respiratory tract act as the initial defense in controlling this 
pathogen (Dockrell et al., 2003). Neutrophils infiltrate shortly after and aid bacterial clearance until new 
macrophages are recruited (Bergeron et al. 1998). While a detailed model that includes the dynamics of AMs, 
neutrophils, recruited macrophages, and the cytokine signaling between them has been developed (Smith, 
McCullers, and Adler, 2011), corresponding models describing these populations during IAV infection have 
not. Thus, we restrict our attention to modeling the AM response.

To model how AMs control pneumococci, pneumococci (P) are assumed to grow logistically with a maxi-
mum rate r and tissue carrying capacity KP, and are phagocytosed by AMs (MA) at rate γMf(P,MA)MA per 
bacterium (Smith, McCullers, and Adler, 2011). Here, γMA is the maximum rate of phagocytosis and the func-
tion f(P,MA) represents the decrease in the efficiency of phagocytosis as the pneumococcal population grows. 
Although it is possible that pneumococci induce AM death, we neglect the turnover of these cells during the 
early stages of the infection and assume their population size remains constant. The equation representing 
these dynamics is given by

	

dP
dt

rP
P

K
f P M PM

P
M A A= −







−1 γ ( , ) , 	 (16.18)
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and n represents the maximum number of bacterial colony forming units (CFU) simultaneously phagocy-
tosed per AM. The model in Eq. (16.18) has been shown to match initial bacterial titer data from mice infected 
with pneumococcus at three different doses (Smith, McCullers, and Adler, 2011).

16.4.2 �IAV -SP coinfection kinetics

To pair the models in Eqs. (16.4)–(16.7) and Eq. (16.18), terms that describe proposed mechanisms of interac-
tion are included (Smith et al., 2013). It is not readily apparent which terms in the individual models should 
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be modified or how they should be changed to mimic coinfection. However, testing specific hypotheses 
(e.g., viral-induced impairment of bacterial phagocytosis) and knowledge of how each parameter affects the 
viral titer curve during Phases I and II (Eqs. (16.8)–(16.9)) of the IAV infection provide reasonable starting places.

The hypothesis that bacterial pathogens invade during influenza infection because they can more easily 
attach to exposed receptors and to virus-infected epithelial cells (Ahmer et al. 1999; Peltola and Mccullers, 2004) 
can be examined by assuming that more available infection sites means a larger carrying capacity (KP). Thus, 
multiplying KP by a factor of (1+ψV) in Eq. (16.18). However, another possible consequence of this improved 
attachment to infected cells is that bacterial toxins, such as pneumolysin, can increase the rate at which these 
cells (I1 and I2) die (Fischetti et al., 2006). This is included in the model by adding − μPI1,2 to Eqs. (16.5)−(16.6), 
respectively. A similar term can also be added to Eq. (16.4), but doing so has little effect on the dynamics because 
the target cell population is near zero when the bacterial infection is initiated (7 d post-influenza).

Another hypothesis that can be examined with Eqs. (16.4)−(16.7) and (16.18) is that IAV infec-
tion may alter bacterial clearance by impairing the protective ability of AMs (Sun and Metzger, 
2008). To represent this effect in the simplest way, the clearance term in Eq. (16.18) can be adjusted to 
− −γ φMA A Af P M PM V( , ) ( ˆ( ))1 , where ˆ( )φ V  is a function that is dependent on the amount of virus present 
and describes how the phagocytosis rate is reduced. One functional form that has been used is a Hill-type 
function, ˆ( ) ( )φ φV V K V= +/ PV , where ϕ is the maximal reduction of the phagocytosis rate and KPV is the 
half-saturation constant (Smith et al., 2013).

In developing a model, building equations that can reproduce the data may require inclusion of terms 
for which there is no pre-determined hypothesis or experimental evidence. In the case of IAV-SP coinfec-
tions, the rebound in viral titers could be reproduced by modifying the rate of virus production (p) to 
pI a P2 1( ˆ( ))+ , where ˆ( )a P  is a function that is dependent on the amount of bacteria present and describes 

how the virus production rate is increased. The functional form ˆ( )a P aP= z has been used to describe this 
effect (Smith et al., 2013).

Other processes that could be altered in the model include the rates of viral infectivity (βV), viral clear-
ance (c), and infected cell loss (δ). Based on the Phase I and II solutions (Eqs. (16.8)–(16.9)), β and c most influ-
ence the model solution in the first 2-3 d but have little effect in the later stages of infection. Thus, potential 
alterations to these processes can be excluded. The infected cell loss (δ), on the other hand, dictates the viral 
decay. However, this decline is exponential and modifying the rate can at most slow the decay rather than 
increase the viral load in the non-linear fashion observed in the data. Thus, effects on these terms of the 
equations are not considered. Taken together, the following equations (shown schematically in Figure 16.2a) 
describe the processes proposed above.

	

dT
dt

= − βTV 	 (16.19)

	

dI1 = βTV − kI1 − μPI1dt
	 (16.20)

	

dI2 = kI1 − δI2 − μPI2dt 	 (16.21)

	
ˆ
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Figure 16.2b shows the simultaneous fit of Eqs. (16.19)–(16.23) to the viral and bacterial lung titers in 
mice from an IAV infection followed 7 d later by a pneumococcal infection. The dynamics generated are in 
good agreement with data and indicate that two independent mechanisms are at play. First, a reduced rate 
(~85–90%) of bacterial phagocytosis by AMs in the presence of IAV can lead to rapid bacterial growth. Based 
on the change in slope in the bacterial dynamics at 10 h post-bacterial infection (Figure 16.2b), clearance by 
unimpaired AMs diminishes quickly. Second, additional virions can be released from infected cells in the 
presence of SP. Further, model fits to the data suggest that although bacteria may adhere to epithelial cells 
better in IAV-infected individuals, that this does not affect the viral and bacterial load dynamics.

16.4.3 �I nitial dose threshold

It can be easily seen by simulating Eqs. (16.19)–(16.23) with values for ϕ between 0 and 1 that ϕ is a bifurcation 
parameter dictating whether bacteria grow to their carrying capacity or are cleared (Smith and Smith 2016). 
These two outcomes are stable steady states of the system, and the unstable steady state that helps define the 
separatrix between them can be derived analytically. This separatrix is dependent on ϕ and predicts an initial 
dose threshold (Figure 16.3a) (Smith and Smith, 2016). This means that the bacterial dose needed for successful 
bacterial invasion during IAV infection is correlated with the changes in AMs and varies rapidly as the rate of 
bacterial phagocytosis declines (i.e., as ϕ → 100%). For a bacterial infection 7 d post-influenza, ϕ ≈ 87% and 
thus any dose greater than 1 CFU could support bacterial growth (Figure 16.3A). The point where any dose 
will elicit a bacterial infection can be calculated from where the unstable steady state changes from being a 
real root to a complex root and is defined by ˆ /( )φ γcrit M Ar M= −1  (Smith and Smith, 2016).

16.5 � EXPERIMENTALLY VALIDATING MODEL PREDICTIONS

In modeling host-pathogen dynamics, we attempt to make robust predictions that can be subjected to 
experimental examination. This is not always possible due to technical limitations, but the predictions 
from the IAV-SP model have recently been examined and verified. With regards to the model prediction 
that bacteria increase the rate of virus production, results from an in vitro experiment that investigated 
molecular changes during coinfection found that IAV replicates more efficiently due to bacterial inhibi-
tion of IFN signaling in IAV infected cells (Warnking et al., 2015). With regards to the model prediction 
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Figure 16.3  Initial Dose Threshold and Experimental Validation. (a) Bacterial steady states (solid horizonal 
lines) for the coinfection model for different values of AM depletion: clearance (0 CFU) or growth to maximum 
carrying capacity (KP). The nonlinear threshold (dashed line) dictates if bacteria increase or decrease. The 
square, circle, and triangle (panels a and b) indicate 3 of the 20 combinations of AM depletion and bacterial 
doses that were examined to validate the threshold prediction (see panel c). (b) Estimated initial dose require-
ment throughout IAV infection calculated using the degree of AM depletion at the indicated time point (see c) 
and the threshold in panel a. (c) Average bacterial growth rate in the first 4 h for infection with influenza PR8 
followed 5d later with pneumococcus D39 at the indicated doses. Bacterial loads decay for doses below the 
threshold, remain relatively constant for doses near the threshold, and grow for doses above the threshold. 
(From Smith, A.M., and Smith, A.P., Scientific Reports, 6, 38703, 2016. a. From Smith, A.M., and Smith, A.P., 
Scientific Reports, 6, 38703, 2016; b. From Smith, A.M., and Smith, A.P., Scientific Reports, 6, 38703, 2016. The 
data and models in all panels were reproduced from Smith, A.M., and Smith, A.P., Scientific Reports, 6, 38703, 
2016.)
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that IAV reduces phagocytosis by AMs, results from an experiment that tracked the AM population with 
a labeling dye and standard flow cytometry techniques found that these cells become depleted during 
IAV infection (Ghoneim, Thomas, and McCullers, 2013). In addition, this study found that the minimum 
number of AMs occurs on day 7 of the IAV infection (Figure 16.2c). This minimum was 85–90% lower than 
baseline, which is consistent with the model’s estimate of ϕ = 0.87 that resulted from fitting Eqs. (16.19)–
(16.23) to the data (Figure 16.2b). These results help explain the laboratory evidence that bacterial coin-
fections are most lethal 7 d after influenza (McCullers and Rehg, 2002) and gave important insight into 
immune cell dynamics during IAV infection.

Importantly, these new data on the AM population validate the added 1 − ˆ( )φ V  term in Eq. (16.23) and 
its dependency on the virus concentration (V). However, the chosen functional form, ˆ( ) ( )φ φV V K V= +/ PV , 
may be  incorrect. Nevertheless, approximating ˆ( )φ V  in this way and assuming that the AM population 
remains constant still produced robust predictions. Another remarkable observation from the experiments 
that validated the model is that a precise estimate for the value of ϕ was possible even when this parameter 
was correlated to KPV (Figure 16.2d) (Smith et al., 2013; Ghoneim, Thomas, and McCullers, 2013).

With the knowledge about the fate of AMs during IAV infection, new analysis of the model in Eqs. (16.19)−
(16.23) is possible (Smith and Smith, 2016). The time-dependent dynamics of AM depletion and the evidence 
that ϕ is an estimate of this depletion suggests that the initial dose threshold for successful invasion of the 
bacteria, which is a function of ϕ (i.e., AM depletion), is dynamic. An estimate of the dose requirement to 
initiate bacterial growth throughout IAV infection can be calculated (Figure 16.3b) and the results have been 
tested in the laboratory (Figure 16.3c) (Smith and Smith, 2016). Indeed, experiments that examined bacterial 
growth for doses above and below the threshold at different initiation times for the bacterial coinfection veri-
fied the model prediction (Smith and Smith, 2016).

16.6 � CONCLUDING REMARKS

The dynamics of host-pathogen interactions are complex. Over the last several years, the technical capa-
bilities to measure living systems in more quantitative detail have improved and allowed for a large amount 
of data to be generated in an attempt to gain a deeper understanding of infectious disease pathogenesis. 
However, interpreting the data requires developing mathematical models that can explain the observations 
and provide important insights into the biology of these systems. These models readily assess the rate, magni-
tude, and effectiveness of host-pathogen interactions and the dynamic feedback of variables, which are often 
nonlinear and occur on various time scales.

Here, we discussed some examples of mechanistic models that have been used to investigate the complex 
interactions between the host and viral and bacterial pathogens. We also highlighted multiple examples of 
how experiments that test the model predictions can verify model accuracy and yield additional biological 
insight. Importantly, the approach we described is not based on including every biological detail in the analy-
ses, but rather provides a simplification or approximation to the underlying dynamics and is used to identify 
the most important components driving the kinetics. Model complexity is then increased step-by-step as the 
data supports it and as each model reveals its own successes and failures at explaining the data. This approach, 
beginning with the basic model (Eqs. (16.1)−(16.3)), has been used with great success in investigating infec-
tious disease dynamics. For example, this model has been used to study acute infections, such as with influ-
enza virus (reviewed in (Smith and Perelson, 2011; Beauchemin and Handel, 2011; Boianelli et al., 2015)), 
West Nile virus (Banerjee et al., 2016), Zika virus (Best et al., 2017), chronic infections, such as primary 
HIV infection (Stafford et al., 2000), treatment of HIV, HBV, HCV, or IAV infection (e.g., (Neumann, 1998; 
Perelson et al., 1996; Ribeiro, Lo, and Perelson, 2002; Smith, 2016; Baccam et al., 2006)), and viral-bacterial 
coinfections (Smith and Smith, 2016; Smith et al., 2013).

Importantly, further work is still needed in developing mechanistic models that assess the host immune 
response and the synergism or antagonism of simultaneous or sequential infections. The examples discussed 
here are only the beginning and will facilitate the new collaborative efforts between experimental scientists 
and modelers with the goal of gaining new insights into infectious disease pathogenesis.
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Viral fitness landscapes
A physical sciences perspective

GREGORY R. HART AND ANDREW L. FERGUSON

17.1 � INTRODUCTION

Viruses are the most prevalent biological agents on Earth, occupying every ecological niche, infecting all 
known forms of life, and outnumbering cellular organisms by at least an order of magnitude [1–4]. Derived 
from the Latin meaning “venom” [5,6], viruses are often considered organisms “on the edge of life” carry-
ing hereditary genetic material and subject to natural selection, but which are themselves unable to repro-
duce, instead reliant on hijacking the replication machinery of an infected host [5,7,8]. Viruses exist as small 
pathogenic particles tens to hundreds of nanometers in size known as virions [1]. A virion comprises a sin-
gle or double stranded RNA or DNA genome shrouded in a proteinaceous coat known as a capsid, which 
itself may be encapsulated by a lipid bilayer envelope containing additional proteins and/or carbohydrates 
[1,8,9]. Viruses are communicated by many means, including air, water, sexual contact, and vectors such as 
mosquitos. Common viruses infecting humans include influenza, hepatitis B virus (HBV), hepatitis C virus 
(HCV), human immunodeficiency virus (HIV), and Zika virus. Upon entering the body, innate and adaptive 
immune responses seek to destroy the virus and prevent an infection, which—depending on the viral strain, 
health of the host, intensity of infection, and efficacy of treatment—can induce symptoms ranging from mild 
discomfort, to organ failure, to death.

Upon infecting a susceptible cell, a virus releases its genetic material and proteins to coopt the host 
replication machinery and produce daughter virions that are released to go on and infect other cells. 
Infection damages host tissues by inducing pathological changes to the host cell, and ultimately cell death 
by lysis or apoptosis (programmed cell death) [5]. Some viruses, however, can remain dormant within 
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infected cells for years, providing a latent reservoir of infection [5]. Most viruses, RNA viruses in par-
ticular, are highly error prone in copying their genetic material, introducing random mutations into the 
genome of the daughter virions [8,10]. Most mutations are deleterious to the virus by impairing the activ-
ity of viral proteins, others are neutral having negligible impact on viral function, while a small number 
may be beneficial by enabling the virus to escape from host immune pressure or develop resistance to an 
antiviral drug. Mutation rates are a strong function of genome size, and can vary between 10–8 – 10–6 sub-
stitutions per nucleotide per cell infection for DNA viruses to 10–6 – 10–4 for RNA viruses [11,12]. Together 
with high virion production rates, the genetic diversity of viral strains within an infected host can be 
exceedingly high, enabling rapid escape from host immune responses. In hepatitis C virus, for example, 
a high mutation rate of ~1.2 × 10–4 substitutions per nucleotide per cell infection conspires with a high 
virion production rate of ~1012 viral progeny per day to produce all possible point mutations at all posi-
tions in the 9600-nucleotide genome every single day [11,13,14]. Data-driven models of viral mutation 
and evolution based on physical sciences principles can provide new fundamental understanding of the 
relationship between viral sequence and infection outcome, and guide and accelerate the design of new 
antiviral vaccines and drugs.

17.2  SEQUENCE SPACE AND VIRAL FITNESS LANDSCAPES

The genotype of each viral strain—the genetic sequence of its RNA or DNA genome—determines, together 
with its interaction with its environment, its phenotype—the characteristics and performance of the virus 
[10]. The phenotype, in turn, dictates the viral fitness [10,15–17]. The definition of fitness can be somewhat 
slippery [15,18,19]. For viral replication within an infected host the replicative fitness is the appropriate mea-
sure, and has been succinctly defined as “the capacity of a virus to produce infectious progeny in a given 
environment” [15,17]. (This should be distinguished from transmission fitness describing the capacity of a 
viral strain to jump between hosts and the epidemiological fitness defining the capacity of a particular viral 
strain to come to dominate within a particular host population [15].) The replicative fitness is a positive real 
number that can be empirically measured in vitro or in vivo [15,19–22].

For a viral genome of length M nucleotides, each position can be occupied by one of four nucleobases, 
leading to 4M possible distinct viral strains. Alternatively, for a N-residue proteome in which each position 
can be occupied by one of 20 naturally occurring amino acids, there are 20N distinct sequences. For hepatitis 
C virus, M ≈ 9600 and N ≈ 3000, such that there are more than 105700 distinct viral genomes and 103900 distinct 
proteomes [14]. For comparison, there are “only” around 1080 protons in the universe [8,23,24]. The size of the 
known universe may be astronomically big, but the sequence space accessible to the virus is “genomically” 
large [25]!

Mathematically, the ensemble of viral genomes or proteomes define a set S. Distances between sequences 
are naturally measured by the Hamming distance, dH, quantifying the number of point mutations by which a 
pair of sequences differ. The set S and distance dH together define a M-dimensional metric space (S,dH) known 
as sequence space [8,10,12,26]. The sequence space can be conceived as a M-dimensional hypercube with 
genome sequences residing on the vertices and edges connecting nearest neighbors differing by a single point 
mutation [10,12]. This space is high-dimensional, highly-connected, and dense [8] (Figure 17.1).

Superposing the (replicative) fitness of each strain onto the sequence space defines a (M+1)-dimensional 
fitness landscape [8,10,26,27]. First posited by Sewall Wright in the 1930s [24] and refined by J. Maynard 
Smith [28], Manfred Eigen, and Peter Schuster [29,30] in the 1970s, the fitness landscape is a cornerstone of 
population genetics coupling the key concepts of sequence space and differential fitness. In essence, the fit-
ness landscape can be considered the “playing field” over which the virus is constrained to evolve, defining 
a quantitative map describing how its fitness changes as point mutations arise by the error prone replication 
machinery. Replicatively fit strains that rapidly produce progeny reside at the peaks of the fitness landscape, 
whereas unfit strains containing mutations that impair protein function reside in low-fitness valleys [31,32]. 
Viral evolution is the process of mutational motion over the fitness landscape under applied selective pres-
sure [28].
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17.3 � QUASISPECIES THEORY

For rapidly mutating viruses, the picture of viral evolution as a hill-climbing process in which the virus seeks 
to maximize fitness is not quite correct [18,27]. Due to the high rate at which mutations are introduced during 
viral replication, a viral strain residing in sequence space at a particular vertex of the M-dimensional hyper-
cube does not generate identical copies of itself, but produces daughter progeny that “leak” along the edges 
of the hypercube into neighboring mutational states. Recognizing the importance of this effect upon natural 
selection, Manfred Eigen and Peter Schuster proposed that the unit of natural selection was not a particular 
viral strain, but a swarm of closely related mutant strains known as a quasispecies that arises from a balance 
between mutation and selection [29,30]. The deterministic evolution of the quasispecies over the fitness land-
scape in the infinite population size limit is specified by a first order nonlinear differential equation known as 
Eigen’s equation, or the quasispecies equation [8,10,29,30,33–35],

	
n n f q n ni j j ij k i

j

K
= − ( )

=∑ φ { }
1

	 (17.1)

where there are K distinct genomes i = 1..K, ni is the fraction of the population with genome i and the popu-
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fitness of the population defining the fitness-independent removal rate of each strain to keep the total popula-
tion size fixed. This equation may be succinctly expressed in matrix-vector form as [35],

	 n QFn n f n= − ( . ) , 	 (17.2)
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Figure 17.1  Illustrative fitness landscape for a hypothetical M = 4 position virus, each of which can take on 
z = 2 values {0,1}. The K = zM = 24 = 16 distinct viral genomes comprising the sequence space S define the 
nodes of a 4-dimensional hypercube (tesseract) with edges linking genomes differing by a single point muta-
tion (Hamming distance, dH = 1). Superposing the fitness of each mutant over the sequence space defines 
the (M+1)-dimensional fitness landscape represented here as a heat map. Although low-dimensional pictures 
provide “a very inadequate representation of such a field” [24], the mathematical concept indicated by this 
schematic straightforwardly generalizes to arbitrary M and z.
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where n = [n1,n2,…,nK]T is a column vector specifying the instantaneous structure of the viral population, n is 
the rate of change of the population structure, Q = [qij] is the left stochastic mutation matrix, f = [f1,f2,…,fK]T, 
and F = diag( f) is the diagonal fitness matrix. The nonlinear quasispecies equation can be transformed into a 
linear differential equation and solved exactly using path integrals [36,37]. This treatment represents the time 
evolution of the viral population as a sum over all possible mutational trajectories from the initial to the final 
population structures, and rests on similar principles and mathematics as the path integral formulation of 
quantum mechanics due to Paul Dirac and Richard Feynman [38]. In the limit of perfect replication fidelity 
(i.e., a diagonal mutation matrix), the quasispecies equation reduces to the standard replicator equation [10].

The quasispecies equation is central to the study of viral dynamics, and makes a number of important 
predictions (Figure 17.2). First, it asserts that for rapidly mutating viruses, natural selection acts on the level 
of the quasispecies rather than the individual strain [12,29,30]. Second, it predicts that while at low mutation 
rates the equilibrium quasispecies will be centered on the global fitness maximum, at sufficiently high muta-
tion rates it may sacrifice a narrow high peak in favor of a broad lower peak [8,10,29,30]. This result can be 
understood as natural selection on the level of the quasispecies, which seeks to maximize the mean fitness 
of the swarm of closely related strains. A virus with a low-error rate can exist as a tight cloud of member 
strains within a narrow high fitness peak, resulting in a high mean fitness of the population. A high-error 
rate virus exists as a diffuse cloud of strains due to mutational “leakage” along the edges of the sequence space 
hypercube. In the region of a high narrow peak, many members of the high-error rate ensemble will exist in 
low fitness states outside the peak, pulling down the mean fitness of the population. In the region of a lower 
but broader peak, more members of the quasispecies occupy high fitness states, leading to a net elevation of 
the mean fitness. This phenomenon has been termed “survival of the flattest” [39,40]. Third, it predicts the 
existence of a maximum error rate beyond which the quasispecies loses cohesion and cannot adapt to the 
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Figure 17.2  Equilibrium quasispecies distribution n* over the sequence space as a function of mutation rate. 
Continuing the example of a M = 4 position virus with z = 2 values {0,1} per position, we can simulate its qua-
sispecies dynamics over its K = 16 state fitness landscape in Figure 17.1. The fitness landscape is specified by 
the (relative) fitness vector f = [0.7,0.1,0.9,0.7,0.5,0.1,0.7,0.6,0.5,0.1,0.7,0.6,0.5,0.1,0.6,0.6]T with elements arranged 
in standard order (i.e., 1 = 0000, 2 = 0001, …, 15 = 1110, 16 = 1111). The mutation matrix is specified as Q = [qij], 
where q p pij

Hij M Hij= (1 )( )− −  (Eq. 17.3), Hij is the Hamming distance between strains i and j, and p is the muta-
tion rate per position per replication cycle. We solve for the equilibrium quasispecies distribution over the 
sequence space by solving for the steady state solution of the quasispecies equation (Eq. 17.2) as a function of 
mutation rate [35]. In the left panel we reproduce the fitness landscape illustrated in Figure 17.1 superposed 
with pie segments indicating the equilibrium fraction of the quasispecies population partitioning into each 
mutational state at a low mutation rate of p = 0.02. Under these conditions, the virus possesses relatively high 
copying fidelity and the quasispecies localizes around the fitness peak at state [0010], with a small fraction of 
the population leaking into the neighboring strains. In the right panel we illustrate the equilibrium distribution 
at an elevated mutation rate of p = 0.4, where the quasispecies has experienced an error catastrophe such 
that it cannot adapt to the topography of the fitness landscape and has delocalized across sequence space.
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fitness landscape [8,10,33,41–44]. This error catastrophe can be shown to be analogous to a first order phase 
transition in a finite system [45], corresponding to a loss of locality of the quasispecies within sequence space 
[46–50]. Evidence suggests that many RNA viruses possess mutation rates close to the error threshold, which 
is thought to provide a survival advantages to the virus by offering a reservoir of viral phenotypes, enhancing 
adaptability, and aiding in the development of immunological escape mutations [8,43,51,52]. Drug therapies 
that elevate the viral mutation rate above the error threshold are under investigation as novel treatments for 
HIV [53–56].

Despite the central importance of quasispecies theory in the theoretical understanding of viral evolu-
tion, it has not enjoyed strong experimental support largely due to the technical difficulties associated with 
sequencing a substantial fraction of the strains constituting the quasispecies [34]. Nevertheless, support 
exists for the existence of the error catastrophe [57], and recent advances in deep sequencing and ultra-deep 
sequencing are expected to enable more rigorous testing of its predictions [34]. One significant deficiency 
of the theory is that it is inherently deterministic, therefore pertaining to formally infinite viral popula-
tions. Viruses can have relatively small effective population sizes, such that stochastic effects can play an 
important role in their evolutionary dynamics [33,50]. Numerical population genetics simulations provide 
a means to explicitly account for stochasticity and also straightforwardly incorporate other effects such as 
co-infection, recombination, spatial heterogeneity, and drug or immune pressure [33,50,58–61]. Finally, we 
note the ingenious observation by Guy Sella and Aaron Hirsh of an isomorphism – under relatively restrictive 
conditions – between population genetics and equilibrium statistical thermodynamics [62]. Similar analogies 
to statistical mechanics and information theory have been made by Michael Deem, Arup Chakraborty, Bill 
Bialek, Hendrik Richter, and ourselves [26,31,32,49,59,63–68].

A prerequisite to simulating viral dynamics using either quasispecies theory or numerical simulations is 
specification of the fitness landscape f and the mutation matrix Q. The mutation matrix is typically assumed 
to be non-negative, symmetric, and stochastic [35]. Assuming independent identically distributed (iid) muta-
tions, the mutation matrix Q = [qij] can be straightforwardly specified as [8,35],

	
q p

z
pij

Hij
M Hij=

−
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where qij is the mutational probability that replication of strain j produces strain i, p is the mutation rate per 
position per replication cycle, z is the size of the alphabet at each position (z = 4 for genomes, z = 20 for pro-
teomes), M is the number of positions in the strain, and Hij is the Hamming distance (i.e., number of substitu-
tions) between strains i and j. For p = 0, the Q matrix becomes the identity matrix corresponding to perfect 
replication fidelity. For sufficiently small values of p, daughter strains containing two or more mutations 
within the same replication cycle (Hij ≥ 2) may be considered vanishingly rare. Accordingly, Q may be approx-

imated as qii = (1 – p)M, q p
z

pij
M=

−




 − −

1
1 1( )( )  for Hij = 1 , and qij = 0 for Hij ≥ 2, corresponding to a situation 

in which the progeny of any viral strain can contain at most one point mutation and multi-mutant hops along 
the edges of the sequence space hypercube are forbidden. More complex models may allow, for example, for 
correlated mutations, differential probabilities in mutating from a purine to a pyrimidine nucleobase on the 
level of the genome, or accounting for synonymous and non-synonymous mutations in the three-base amino 
acid codon on the level of the proteome. Specification of the fitness landscape defined by the fitness vector f is 
a more involved problem that is the subject of Section 17.4.

17.4 � VIRAL FITNESS LANDSCAPES FROM EXPERIMENT 
AND THEORY

The genotype of a viral strain within a particular environment specifies its phenotype that, in turn, dic-
tates its replicative fitness. The fitness landscape is the convolution of this double mapping from genotype 
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to phenotype to fitness [10,23,26,27]. This mapping can be conceived as a (complicated) function of the viral 
sequence, which integrates over the characteristics and performance of the virus within its environment 
to produce a non-negative real number specifying its replicative competency. Fitness landscapes have typi-
cally been defined by one of two methods: sparse experimental fitness measurements of very limited regions 
of sequence space, or theoretical models designed to reproduce the statistical properties of real landscapes 
[69,70]. The former pertain to one particular viral system and therefore can be used to make fitness pre-
dictions, but have proven difficult to both define and to generalize. The latter are designed to be statistical 
abstractions that are generic to some class of viruses, but necessarily sacrifice predictive accuracy of the fit-
ness of any particular virus.

Experimental determination of comprehensive fitness landscapes is rendered extremely challenging by 
the vast size of viral sequence space. For a viral proteome comprising N amino acids there are 20N distinct 
viral sequences, meaning that experimental measurements of the replicative capacity can only probe a van-
ishingly small fraction of the sequence space [23]. Taking hepatitis C virus as an example, N ≈ 3000 meaning 
that there are 103900 distinct proteomes [14]. Fewer than around 1 in 103897 strains would have to be repre-
sented in meaningful quantities during infection to define a sequence space sufficiently small to be com-
prehensively probed by experimental fitness assays. Nevertheless, advances in next-generation sequencing 
and high-throughput automated assays has led to a growing body of experimental studies designed to probe 
general features of fitness landscapes by measuring the fitness of a limited subset of tens to hundreds of 
mutant strains [23,27,69,71–73]. For example, Qi et al. coupled saturation mutagenesis with deep sequencing 
to measure the fitness of all 1720 possible point mutants within an 86-residue region of the hepatitis C virus 
protein NS5A known to be a target for replication inhibitors [74]. Nonetheless, experimental determination of 
comprehensive fitness landscapes remains inherently intractable for even the smallest viruses, offering only a 
“glimpse…within the immense genotype space” [23].

A more scalable approach is offered by using limited experimental data to fit statistical or regression 
fitness models that may then be extrapolated to predict the fitness of strains that were not directly assayed 
[23,27,72,73,75–78]. For example, Hayashi et al. combined molecular evolution experiments with infectiv-
ity assays to fit the parameters of an NK-model [76]. Hinkley et al. fitted a regularized regression model 
to in vitro fitness measurements of 70,081 mutant strains of HIV incorporating pairwise interactions that 
was capable of explaining 54.8% of the variance in the measured fitness [73]. Segal et al. employed decision 
tree-based approaches to predict HIV-1 replicative capacity as a function of the amino acid sequence of the 
protease and reverse transcriptase viral proteins [77]. In all cases, however, the time, labor, and expense 
associated with in vitro fitness measurements means that models are fit to a sparse library of fitness measure-
ments sampling an infinitesimally small fraction of sequence space. The fitted models are therefore subject 
to significant bias and possess large extrapolation errors for mutant strains dissimilar to those upon which 
the model was trained [75].

A number of theoretical fitness landscape models have been proposed that seek to reproduce the sta-
tistical features and correlations observed in real landscapes. These models have proved extremely useful 
in gaining insight into viral dynamics and adaptation over archetypal landscapes, and as baseline models 
containing parameters that may be tuned to experiment. Epistasis—nonlinear effects due to interaction of 
two or more mutational loci—gives rise to non-additive fitness landscapes and appears to play a critical role 
in the function, dynamics, and evolution of viruses [23,31,34,49,79–81]. One of the first and most popu-
lar fitness models explicitly designed to capture epistasis is Kaufmann’s “tuneably rugged” (i.e., “tuneably 
epistatic”) NK-model [23,26,70,76,82–84]. This model specifies fitness as the sum of random variables cor-
responding to the fitness contributions from N positions, each of which depends on the mutational state of 
K other positions. Specifically, the mutational state of an organism is described by a vector x = [x1,x2,…,xn], 
where x pi i= −{ }0 1 1, , ,( )

 denote the pi possible allelic states of mutational locus i. The organismal fitness 

is given by the sum of the fitness contributions of the N loci f x x xi j j i
i

N
( ) ,{ }= ( )∈

=∑ φ ω
1

, where ϕ is a function 

specifying the fitness contribution of position i which depends on both its mutational state xi and the muta-
tional states of K other positions {xj}j∈ωi with which position i interacts. The set of K interaction partners ωi for 
each position i may be defined randomly or based on some measure of proximity. The fitness contributions 
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φ ωx xi j j i,{ } ∈( )  are typically specified as independent identically distributed (iid) random variables drawn 
from a distribution over its K + 1 arguments. In the limit K = 0, there is no epistasis (i.e., all positions have 
independent fitness contributions) and the landscape is unfrustrated and smooth, the so-called “Mount Fiji” 
model [23]. The limit of K = (N–1) corresponds to all-to-all epistasis, producing a highly rugged and frus-
trated landscape containing many local fitness maxima known as a “house of cards” model that is isomorphic 
to a random energy spin glass [23,85,86]. Generalizations of the NK-model accounting for protein structure 
and binding interactions have subsequently been proposed [63,87]. The “rough Mount Fiji” model superposes 
onto the NK-model a fitness contribution that falls off with Hamming distance away from a reference (usu-
ally the wild-type) strain [23,33,88]. An alternative model is provided by Motoo Kimura’s neutral theory of 
evolution, which envisages mutations to be either neutral or lethal [89]. The corresponding fitness landscape 
is binary, containing viable strains of equal fitness residing on a neutral plateau fissured by valleys of unviable 
mutant strains [88]. Since the unviable strains are considered to be mutationally inaccessible (i.e., have zero 
fitness), this has been described as a “holey” fitness landscape that is isomorphic to a percolation problem over 
the sequence space hypercube [26,88].

17.5 � DATA-DRIVEN VIRAL FITNESS LANDSCAPES

Very recently, data-driven approaches have emerged as a third way to determine empirical fitness landscapes 
from databases of viral sequences [31,32,35,64,90,91]. These approaches adopt a Bayesian perspective to deter-
mine fitness landscapes consistent with observations of viral strains sequenced from infected hosts by assum-
ing a relationship between strain fitness and the relative prevalence of correlated mutational patterns within 
the sequence database [75]. Although the predictions of such models may be validated against in vitro fitness 
assays, these techniques are distinguished from the fitting of fitness models to experimental measurements 
in that they require only a library of observed viral sequences and do not appeal to experimental fitness 
measurements for their construction. This is a critical distinction, since modern low-cost, high-throughput 
sequencing technologies has made these approaches massively more scalable than those predicated on labori-
ous and time consuming fitness assays [34,92].

In 2013, one of us (Andrew L. Ferguson) together with Arup Chakraborty pioneered a data-driven 
approach to reconstruct viral fitness landscapes from viral sequence databases [31]. Subsequent works have 
produced sophistications, analyses, and validations of the approach, and applications to both hepatitis C 
virus and HIV [32,49,59,64,65]. The essence of the approach is to regard the viral strains within a sequence 
database as observations over an unknown fitness landscape and perform Bayesian inference to solve the 
“inverse problem” and reconstruct the most probable fitness landscape from which the strains were drawn. 
Provided that founder effects are weak such that the virus rapidly anneals to the immune response of a newly 
infected host and that the sequence databases of observed viral strains are sufficiently large and represent 
hosts with diverse immunological genotypes, we have demonstrated by both theory and empiricism that the 
fitness landscapes we compute quantify the intrinsic molecular fitness of the virus uncorrupted by “foot-
prints” of adaptive immunity [31,32,59,64,93]. In effect, the diversity of possible immune responses means 
that particular positions within the viral genome are subject to mutational pressure from a small subset of 
the hosts constituting the database, and particular immune responses act as a small perturbation when aver-
aged over sufficiently many hosts [59]. The fitness landscapes determined by our approach reflect the intrinsic 
replicative capacity of the virus in the absence of immune pressure, and can be straightforwardly adapted to 
reflect the effective fitness landscape experienced by the virus in any particular host by superposing the adap-
tive immune responses as an external perturbation [31,32,59].

17.5.1 �R elationship to other work

In 2015, Niko Beerenwinkel and co-workers proposed an elegant framework to estimate intrahost fitness 
landscapes from next generation sequencing data of the viral quasispecies within an infected host [34,35,92]. 
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This approach shares similarities with our own in that it employs a Bayesian inference approach to recon-
struct fitness landscapes from observations of viral strains, but has some important distinguishing differ-
ences. First, the approach is based on intrahost sequencing data and therefore calculates fitness landscapes 
that are the convolution of the intrinsic fitness (i.e., in the absence of immune pressure) with the adaptive 
immune responses of the particular host. The authors used their approach to recover the fitness landscape 
for HIV protein p7 in two hosts, and found the landscapes to be quite different. Containing the “footprints” 
of host immune pressure [93], it is a challenge to generalize these fitness landscapes to new environments 
(e.g., different immune responses, drug pressure, in vitro culture). Second, the approach postulates that the 
ensemble of strains should follow the equilibrium distribution predicted by quasispecies theory to provide a 
model linking strain fitness to prevalence in the sequencing data. Due to the immense size of sequence space, 
it is necessary to operate in a reduced subset of sequence space in which low fitness viral strains are neglected 
[35]. Moreover, the fitness landscape f and mutation matrix Q are not independently identifiable (Eq. 17.2) 
[35,94], meaning that the inference problem requires the specification of a particular Q upon which the 
inferred f then depends. In contrast, our approach is non-parametric in the sense that it does not appeal to 
quasispecies theory nor assume an a priori functional form for the fitness landscape, instead seeking the least 
biased (i.e., maximum entropy) model consistent with the data. The authors devise a Monte Carlo approach 
to perform the Bayesian inference, and have made this available for free public download at http://www.cbg​
.ethz.ch/software/quasifit.

We also observe the relationship of our approach to earlier work by Beerenwinkel et al. in 2005 and 
Deforche et al. in 2008 that coupled cross-sectional sequence data (i.e., sequence data from different infected 
hosts at different times) from treated and untreated cohorts of HIV patients with in vivo evolutionary mod-
els to estimate the effect of drug therapy upon viral fitness and mutation [90,91]. The more recent work by 
Beerenwinkel and ourselves seeks not differential fitness responses to drug therapy, but rather the complete 
fitness landscape either in the presence [35] or absence [31] of host immune pressure.

Our methodology also shares commonalities with innovative work by Bill Bialek and co-workers who 
employed data-driven spin glass models to quantify antibody diversity in zebrafish, the activity of ensembles of 
neurons in salamander retinae, and the flocking behavior of birds [66,68,95–98], and Martin Weigt, Terry Hwa, 
José Onuchic, and co-workers who used data-driven spin glass models to identify coevolving amino acid residues 
or nucleotides to predict putative protein and RNA tertiary structure contacts [99–103].

17.5.2 �M athematical and computational details

Given a multiple sequence alignment (MSA) of viral sequences drawn from multiple infected hosts, we have 
developed an approach to determine the least biased model capable of recapitulating the relative prevalence 
of viral strains within the database [31,32,59,64]. We choose to work with viral proteomes, but the approach 
is equally applicable for viral genomes. Since the viral strains are drawn from amongst the population of 
infected hosts and not from within a single host, we assume that the viral prevalence landscape on the level 
of the infected population is a good proxy for the fitness landscape on the level of a single host. We also make 
the simplifying assumption that the sequences within the database are independent and identically distrib-
uted (iid). We have demonstrated by both analytical theory and experimental comparisons that both of these 
assumptions are valid for sufficiently large and diverse clinical sequence databases containing strains that 
are phylogenetically proximate (e.g., belong to the same viral subtype) [31,32,59,64]. We seek the maximum 
entropy model consistent with the two lowest moments of the amino acid distribution [104,105], namely the 
frequency with which the 20 amino acids are observed at each single position and each of the 20 × 20 = 400 
pairs of amino acids are observed in each pair of positions. The resulting model is the simplest non-trivial 
fitness landscape capable of capturing epistasis at the level of pairs. A natural extension would be to include 
higher order epistatic effects (e.g., triplets, quads, etc.). It has been shown, however, that the exponential 
explosion in the model parameters associated with higher order terms quickly degrades both the numerical 
stability and predictive performance of the model [73]. By terminating the expansion at second order, we 
determine not the intrinsic one- and two-body coefficients, but effective coefficients that implicitly capture 
higher-order correlations and which we have shown to reproduce both the three- and four-body amino acid 

http://www.cbg.ethz.ch
http://www.cbg.ethz.ch
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frequencies [31,32]. This is consistent with observations that effective pairwise interaction models can repro-
duce higher order correlations from the emergent interactions of the constitutive pairs [68,75,96,97].

The maximum entropy model that emerges from this analysis is the infinite-range Potts spin glass from 
statistical physics [32,64,106]. The Potts model can be considered a multistate generalization of the Ising 
model, describing a system of N pairwise interacting spins that each take on one of q discrete states. The 
model is infinite range in the sense that each spin interacts with all other spins, and the energy assigned 
to a particular configuration of the system contains one-body contributions from each of the N spins, and 
two-body contributions from the N(N–1)/2 pairwise interactions. The parameters of the model specify the 
character of these interactions and can generically lead to highly rugged and non-trivial energy landscapes 
[106]. Given an N-residue viral proteome in which each position can be occupied by one of q = 20 naturally 
occurring amino acids, 



A Ai i
N= ={ } 1, where Ai specifies the identity of the amino acid residue in position i, the 

Potts model specifies the probability of observing that sequence as [32,64],
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where E is a fictitious dimensionless “energy”, E A( )


 is the spin glass Hamiltonian specifying the mapping 
from sequence to energy, and the normalizing factor Z e E A

A
= −∑ ( )





 is the partition function. The Hamiltonian 

comprises N 20-element vectors {hi} specifying the contribution of each amino acid in each single position 
to the sequence energy, and N(N–1)/2 20×20 matrices {Jij} specifying the contributions of each pair of amino 
acids in each pair of positions. Since we fit our model against population level sequence databases, P A( )



 
should be interpreted as the probability of observing a particular strain within the ensemble of infected hosts. 
We, and others, have demonstrated using analytical theory [59,62], computer simulations [59], and compari-
sons against in vitro and in vivo data [31,32,64] that the prevalence of a strain at the population level P A( )



 
is a good proxy for intrinsic viral replicative capacity within an infected host f A( )



. The Potts Hamiltonian 
therefore defines the (relative) replicative fitness landscape f of the virus as f A e E A( ) ( )





∝ − . If absolute fitness 
values are required, the constant of proportionality can be determined by fitting against experimental fitness 
measurements for a small number of mutant strains [32,64].

The model parameters {hi,Jij} are fitted such that Eq. 17.4 reproduces the one- and two-body amino acid 
frequencies observed in the MSA, and may be computed in many ways, including mean field and post-mean 
field approximations [100,107–111], message passing [99], adaptive cluster expansions [64,112], pseudo-
likelihood maximization [113], minimum probability flow [114], and Monte Carlo sampling [95,115]. We have 
developed an approach employing iterative gradient descent and Monte Carlo evaluation of model probabili-
ties that provides highly accurate parameter fits. We accelerate convergence using a combination of Bayesian 
regularization, initial mean field parameter estimates, and parallel Monte Carlo chains exploiting CPU or 
GPU multicore architectures. Full details of our methodology and a freely available C++ implementation 
of our code are provided in Ref. [64]. We have also made a user-friendly MATLAB implementation suitable 
for computing fitness landscapes for small viral proteins available for free download at https://bitbucket.org​
/andrewlferguson/viralfitness_matlab.

17.6 � APPLICATIONS

To illustrate our approach, we first demonstrate its application to a cartoon two-residue virus as the simplest 
possible model system capable of exhibiting epistatic couplings between residues. We then describe its appli-
cation to determine the fitness landscape of the hepatitis C virus RNA-dependent RNA polymerase (protein 
NS5B) and show how this landscape may be used for in silico design of vaccine immunogens. We have also 
employed our approach to determine fitness landscapes for multiple proteins of both hepatitis C virus and HIV, 
perform in silico design cytotoxic T cell vaccine immunogens, and make the first theoretical prediction of a 
viral error catastrophe in an empirically-defined viral fitness landscape for the p6 HIV protein [31,32,49,59,64].

https://bitbucket.org
https://bitbucket.org
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17.6.1 �A  toy model of a two-residue virus

We first consider a toy virus comprising precisely two amino acid residues. This is the simplest possible sys-
tem capable of exhibiting epistasis, and possesses the appealing property that the fitness landscape can be 
easily visualized in three dimensions. We specify the fitness landscape of this virus by fiat, and demonstrate 
the capacity of our approach to correctly infer the fitness landscape from sufficiently many observations of 
viral strains over the a priori unknown fitness landscape.

Identifying the particular amino acid residue in position i = {1,2} by an index Ai = {1,2,…,20} arbitrarily 
ordering the 20 natural amino acids, we adopt as the “true” fitness landscape for the cartoon virus the Potts 
spin glass (Eq. 17.4) with {hi,Jij} parameters specified as,
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This fitness landscape was designed to possess a simple but non-trivial topography, possessing a global 
maximum at the sequence [1,1], a global minimum at [20,20], a local maximum at [9,8], and a local minimum 
at [4,4] (Figure 17.3). Since the form of the true fitness landscape and that inferred by our inference technique 
have the form of a Potts spin glass, our approach should be capable of accurately reproducing the one- and 
two-body amino acid frequencies and predicting strain fitness given sufficiently many observations of viral 
sequences over the landscape.

To test this hypothesis, we generated realizations of viral strains sampled over the landscape in propor-
tion to their fitness using Markov chain Monte Carlo sampling [32]. We assembled strains generated in this 
manner into multiple sequence alignments containing different numbers of sequences, then used these 

1

0.8

0.6

0.4

0.2

0

Fi
tn

es
s

5

10

10
20 20

15

15
5

0

Second AA
First AA

Figure 17.3  Fitness landscape of a cartoon viral protein possessing two amino acid residues specified by Eq. 
17.5. We index the amino acid residues available to position i as Ai = {1,2,…,20}, but their ordering is arbitrary. 
A particular sequence [Ai,Aj] can mutate into any other sequence in the same column by making a point muta-
tion in the first residue, and to any other sequence in the same row by making a point mutation in the second. 
The fitness landscape was designed to possess a global maximum at the sequence [1,1], a global minimum at 
[20,20], a local maximum at [9,8], and a local minimum at [4,4].
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alignments and our iterative gradient descent approach to infer the 40 {hi} and 400 {Jij} parameters from the 
data [32,64]. We report in Table 17.1 a quantitative assessment of the capacity of our inferred model to repro-
duce the one- and two-body amino acid frequencies observed in the MSA, and the agreement of the inferred 
model parameters with those of the true landscape. Containing just two mutating residues, the one- and 
two-body mutational frequencies of the true and fitted models can be computed analytically by enumerating 
over all viral mutants. We present in Figure 17.4 parity plots of the true and predicted fitness computed for 
all possible viral strains.

As anticipated, we find that the fitted model can reproduce the one- and two-body mutational frequen-
cies and predict strain fitness to arbitrarily high fidelity given sufficiently many sequences in the MSA. The 
discrepancy between the inferred and true model parameters also decreases with the number of sequences 
in the MSA, but remains non-zero even for near-perfect reproduction of the one- and two-body mutational 
frequencies. This phenomenon appears to result from the existence of “null spaces” or “sloppy directions” 
within the {hi,Jij} parameter space such that particular combinations of the parameters can be adjusted in 
concert without significantly perturbing the energy (i.e., fitness) of a strain or its one- and two-body muta-
tional probabilities [116]. This simple toy problem indicates that it is possible to reconstruct fitness landscapes 
to high precision given sufficiently many sequences, but that care should be taken in assigning meaning to 
individual hi and Jij values.
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Figure 17.4  Parity plots of true versus reconstructed fitness for the cartoon M = 2 residue viral protein pos-
sessing the fitness landscape illustrated in Figure 17.3. The plots illustrate for the ensemble all 20M = 400 viral 
strains the true strain fitness specified by Eq. 17.5 against the fitness predicted by models reconstructed from 
multiple sequence alignments containing (a) 103, (b) 104, and (c) 105 viral strains.

Table 17.1  Quality of fitness landscape reconstruction for a cartoon 2-residue virus with a Potts spin glass 
fitness landscape with parameters specified by Eq. 17.5 for multiple sequence alignments containing various 
numbers of sequences. We report the Pearson correlation coefficient of the analytically computed one-body 
(ρP1) and two-body (ρP2) amino acid frequencies between the true and fitted fitness landscape. We also report 
the root mean squared error in the inferred {hi} and {Jij} parameters relative to their true values

MSA size ρP1 (p value) ρP2 (p value) RMSE {hi } RMSE {Jij }

100 0.47 (2.2 × 10−3) 0.22 (1.2 × 10−5) 14.7 19.6

101 0.52 (6.7 × 10−4) 0.25 (3.1 × 10−7) 17.2 40.9

102 0.72 (1.7 × 10−7) 0.37 (3.3 × 10−14) 23.1 93.5

103 0.93 (1.9 × 10−18) 0.81 (8.0 × 10−96) 14.7 81.3

104 0.99 (1.1 × 10−36) 0.97 (1.1 × 10−238) 2.6 48.5

105 1.00 (3.1 × 10−44) 1.00 (<1.0 × 10−308) 0.7 5.5
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17.6.2 �HCV  in silico vaccine design

Hepatitis C virus (HCV) is a 50 nm single-stranded RNA retrovirus that infects 170 million people 
worldwide—nearly 3% of the global population—and kills more than 350,000 annually [117–119]. The virus 
replicates within the hepatocytes of the liver, leading to fibrosis, cirrhosis, and ultimately hepatocellular car-
cinoma [120]. Known as the “silent killer” due to the fact that infected hosts remain asymptomatic until the 
onset of severe liver damage, HCV is the leading cause of liver transplantation in the industrialized world 
[117,121]. The anti-HCV drug Harvoni released by Gilead Sciences in 2014 is a dual-acting combination ther-
apy targeting HCV proteins NS5A and NS5B with cure rates exceeding 95% [122]. The high cost of such treat-
ments, however, makes them effectively inaccessible in the developing world, such that effective cure rates 
worldwide remain below 10% [118]. Prophylactic vaccination is “the most cost-effective and realistic method 
of controlling HCV globally” [121,123]. Although a cytotoxic T cell-based vaccine trial is in progress, a vac-
cine remains unavailable despite 20 years of work [124–126]. The definition of empirical fitness landscapes 
for HCV viral proteins presents a means to systematically identify regions of the viral proteome vulnerable to 
mutational pressure, informing the rational design of vaccine immunogens to prime the T cell and antibody 
responses capable of corralling the virus into low-lying valleys of the fitness landscape where its replicative 
capacity is compromised. In this manner, computational approaches can function as an efficient and inex-
pensive means to discover promising immunogen designs to guide capital and labor intensive experimental 
and clinical development efforts.

Considering the HCV subtype 1a that is the most prevalent viral clade in the United States, we applied 
our approach to the 591-residue RNA-dependent RNA polymerase—nonstructural protein 5B (NS5B)—
that is responsible for the error-prone replication of the viral genome and is known to contain good targets 
for immune pressure and drug therapies [32]. We assembled an MSA comprising 976 clinically observed 
sequences of the NS5B region of HCV-1a. Only 283 positions were observed to mutate within the sequence 
ensemble, providing us with a ratio of sequences to mutating positions of 3.4:1. We fitted our model using 
the gradient descent approach detailed above using high-performance supercomputing hardware requiring 
approximately 12 CPU-months of calculation. As a numerical validation of the model, we verified that it not 
only accurately reproduced the one- and two-body amino acid frequencies in the MSA, but that it predicted 
the three-body correlations. As experimental validations, we demonstrated the fitness predictions of the 
model to be in excellent accord with in vitro replicative fitness measurements for 31 mutant viral strains, and 
to predict the documented high-fitness escape mutations. As a clinical validation, applications of our model 
to longitudinal sequencing data predict temporal fitness trajectories in good agreement with host immune 
responses, viral load, and maternofetal immune tolerance mechanisms. Full details of our application are 
provided in [32].

Immunodominance is the effect whereby cellular or humoral adaptive immune responses preferen-
tially target particular antigenic epitopes within an invading pathogen [127,128]. Vaccine immunogens 
comprising complete viral proteins or sub-proteins may prime dominant immune responses against poor 
viral targets from which the virus can easily escape and can suppress subdominant responses against 
vulnerable targets that force mutations which cripple viral fitness [31,79,80,129]. Empirical fitness land-
scapes can reveal “soft spots” in the viral proteome particularly susceptible to immune targeting, offering 
a systematic means to determine which epitopes should be included in an epitope-based vaccine to elicit 
potent adaptive immune responses. The immune pressure can be conceived as an external perturbation 
over the viral fitness landscape that cripples the fitness of viral sequences recognized by adaptive immune 
responses, forcing the quasispecies to make deleterious escape mutations. Essentially, we seek to hit the 
virus where it hurts by priming immune responses to exclude it from high-fitness peaks and trap it in 
low-fitness valleys.

Having estimated and validated the empirical HCV-1a NS5B fitness landscape, we used it to exhaustively 
screen all 16,777,215 immunogen candidates comprising all possible combinations of the 24 cytotoxic T 
cell (CTL) epitopes targeted by the top 66 immunological haplotypes of North Americans. We evaluated 
each immunogen candidate by seeking to simultaneously optimize three design criteria: (i) maximize the 
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mean reduction in the fitness of the viral quasispecies averaged over the North American population (i.e., 
the degree to which vaccine-induced immune responses are capable of ejecting the virus from the high-
fitness peaks in the average vaccine recipient), (ii) maximize the fraction of the North American population 
responding to the vaccine (i.e., the fraction of vaccine recipients possessing at least one immune responses 
that can be primed by the vaccine), and (iii) minimize the size of the immunogen to control the cost and 
complexity of the vaccine [130]. We present in Figure 17.5 a scatter plot of all immunogen candidates within 
this 3D design space, and the 86 candidates residing on the Pareto (optimal) frontier [131]. These candi-
dates are optimal in the sense that no one design criterion can be improved without incurring a penalty 
in another; candidates away from the frontier are non-optimal since one or more criteria can be improved 
without compromising another. This in silico design strategy enabled by data-driven fitness models provides 
a five orders of magnitude reduction in the combinatorial space of all possible immunogen candidates, 
presenting a means to guide and accelerate experimental vaccine design by focusing resources on the most 
promising candidates.

17.7 � OUTLOOK AND CHALLENGES

The fitness landscape paradigm has a rich history dating back more than 85 years and is a cornerstone of 
theoretical population genetics [24,28–30]. The recent confluence of high-throughput sequencing technolo-
gies and high-performance computing has reinvigorated this concept in new and exciting ways by enabling 
the determination of empirical viral fitness landscapes from experimental and clinical sequence data-
bases [26,31,32,34,35,64,70]. From a fundamental perspective, these quantitative models of the genotype-
phenotype-fitness relationship furnish new understanding of viral dynamics and evolution. From an applied 
perspective, these mappings offer a powerful roadmap for rational in silico immunogen design to guide and 
accelerate the development of antiviral drugs and vaccines.
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Figure 17.5  Scatter plot of all 16,777,215 HCV-1a immunogen candidates comprising all possible combina-
tions of the 24 cytotoxic T cell epitopes targeted by the top 66 immunological haplotypes of North Americans. 
Each immunogen is evaluated along three design criteria: (i) the mean reduction in the fitness of the viral qua-

sispecies over the empirical fitness landscape averaged over the vaccine recipient population, ∆ E , (ii) the 
fraction of vaccine recipients capable of eliciting immune responses to at least one epitope within the vaccine 
immunogen, and (iii) the number of epitopes in the vaccine immunogen. Of all 16,777,215 immunogen candi-
dates (crosses) there are 86 Pareto optimal candidates (circles) residing on the efficient frontier. These candi-
dates are optimal in the sense that no design criterion can be improved without incurring a penalty in another. 
The particular candidate defining the global optimum depends on the relative importance assigned to each 
of the three criteria. We have illustrated the human leukocyte antigen (HLA) associations, locations within the 
HCV proteome, and sequences of the 10 epitopes comprising one particular candidate on the optimal frontier 

possessing ∆ E  = 6.6 and 71.2% fractional coverage.
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We envisage exciting opportunities and challenges for data-driven inference of viral fitness landscapes. 
Fitting models for large viral proteomes will require the development of computationally efficient algorithms 
and implementations to take advantage of multicore CPU architectures and GPU accelerators. Theoretical 
advances can also play an important role in reducing model complexity by establishing multi-resolution 
and/or coarse-grained fitness models to improve stability and reduce complexity, and to develop Bayesian 
procedures to incorporate heterogeneous prior knowledge such as tertiary protein structure, protein-pro-
tein interactions, mutational epistasis, and in vitro fitness assays into the model fitting procedure. We also 
anticipate the development of integrated models coupling molecular-level fitness landscapes to host-level 
models of viral quasispecies evolution to population-level epidemiological models as data-driven multiscale/
multiphysics simulators of viral dynamics. Advances in experimental and clinical assays will play an impor-
tant role in furnishing sequence data upon which these models are founded at both higher volume and higher 
quality, and in providing more rigorous and stringent tests of the model predictions. As next-generation 
sequencing becomes faster and cheaper, we envisage that it will become routine to determine empirical fit-
ness landscapes for viral proteins and even entire proteomes. Calculating a full-proteome viral fitness land-
scape would represent an important milestone in virology and population dynamics, representing the first 
quantitative genotype-phenotype-fitness mapping for a complete organism. The definition of viral fitness 
landscapes is currently limited to relatively rapidly mutating viruses for which sufficiently high diversity in 
the viral quasispecies can be quantified to provide a good sampling of the accessible sequence space (e.g., HIV, 
HCV, dengue fever, influenza). Advances in deep and ultra-deep sequencing technologies capable of resolving 
more of the low-copy number members of the quasispecies ensemble will open the door to developing fitness 
models for less highly mutable viruses.
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18.1 � IMMUNOLOGICAL SYNAPSE ORIGINS

18.1.1 �L inear models for cell adhesion

When the term immune synapse first appeared in print (Norcross, 1984), I was an undergraduate biologist 
tasked to measure glucose transport in human red blood cells (RBC). This was no simple task due to the high 
number of what would become known at Glut1 transporters in the RBC membrane (Lodish, 2013). I was 
rescued in this effort by a powerful inhibitor that allowed me to establish a time course and a set of published 
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rate equations that allowed me to define Km and Vmax for the transporter under different conditions (Dustin 
et al., 1984). The lab I was working in was also studying proteins involved in contact inhibition of growth 
and struggling with isolation of these proteins (Vale et al., 1984). The problem of cell-cell communication 
through surface receptors captured my interest, and I sought out labs working in this area as a graduate 
student. I was fortunate to be introduced to Tim Springer just as his lab had identified three lymphocyte 
function associated (LFA) molecules using function blocking monoclonal antibodies (Springer et al., 1987). 
The molecules were among the first well-defined cell adhesion molecules as they mediated conjugate forma-
tion between cytotoxic T cell and target cells, and their broader roles in the immune response were rapidly 
becoming apparent. Relationships between the three molecules were established through application of a 
linear model (Shaw et al., 1986). The model assumed that each antigen was part of a receptor-ligand pair 
that was completely blocked by its antibody. It was found that effects of anti-LFA-2 (CD2) and anti-LFA-3 
(CD58) were non-additive, whereas anti-LFA-1 was additive in its effects with either anti-CD2 or anti-CD58. 
The hypothesis generated by this model and data was that CD2 and CD58 are a receptor ligand pair and that 
LFA-1 was part of a distinct pathway. I had the opportunity to be involved in testing this hypothesis with 
purified CD2 and CD58 and extended it to analysis of LFA-1 ligands in Springer’s lab. Intercellular adhesion 
molecule-1 (ICAM-1) was defined by a monoclonal antibody that inhibited the LFA-1 dependent aggregation 
of B cell lines (Rothlein et al., 1986). Using culture endothelial cells I showed that the cytokine induced and 
LFA-1 dependent adhesion of B cells to endothelial cells was dependent on ICAM-1, but also identified at 
least one LFA-1 dependent, constitutively expressed ligand activity, and a distinct LFA-1 ligand independent 
activity using quantitative cell adhesion assays (Dustin and Springer, 1988). Based on these predictions we 
then sought and cloned intercellular adhesion molecule-2 based on binding of cells transfected with an endo-
thelial cell cDNA library to purified LFA-1. ICAM-2 exactly fit the prediction of a constitutively expressed 
and non-cytokine regulated ligand for LFA-1 on human endothelial cells (Staunton et al., 1989). The LFA-1 
independent component turned out to be Very Late Activation Antigen- 4 (VLA-4) interaction with Vascular 
Cell Adhesion Molecule-1 (Elices et al., 1990), which gave patients suffering with relapsing multiple sclerosis 
a powerful therapeutic some time later (Polman et al., 2006). The ability to succeed with these linear models 
was based on an experimental optimization of a very complex non-linear process. While we succeeded in 
identifying molecular mechanisms based on predictions from linear models, the biophysical process lead-
ing to adhesion in these cases was still largely a mystery. We knew that receptors like VLA-5 accumulated at 
“focal adhesion” in stromal cells and LFA-1 was shown to accumulate at the immunological synapse between 
helper T cells and B cells (Kupfer and Singer, 1989). We could also use purified LFA-1 and ICAM-1 to carefully 
analyze the regulation of adhesion systems and define different modes of regulation (Dustin and Springer, 
1989). Despite improved quantification, there was no way to directly quantify these interactions the way they 
normally functioned, as was commonplace for hormones or cytokines. Methods were needed to gain infor-
mation about interstitial migration and immune recognition by molecules like CD2 and CD58. But the basic 
parts list was in place for defining an immunological synapse.

18.1.2 �S upported lipids bilayers as a model for quantifying 
bond formation

The effort to measure the interactions that mediated migration and immune recognition was also underway, 
but calibrating these measurements was a challenge. The 1970s saw the description of antibody mediated 
patching and capping as early events in cellular responses to antibodies (Braun et al., 1978; Braun et al., 
1979), but these studies were not translated to interfaces until the early 1980s. Studies of IgE Fc receptor (FcR) 
were leading the field in many respects with experiments demonstrated a correlation between accumulation 
of laterally mobile dinitrophenol (DNP) specific IgE- FcR complexes on the surface of a mast cell line and 
adhesion strength to beads coated with immobile DNP (McCloskey and Poo, 1986). These experiments took 
advantage of the lateral mobility of the cell surface receptors, but active mechanisms in the cell that could also 
control movement of the FcR could not be ruled out, complicating the interpretation of receptor distribution 
changes. While the relationship of fluorescence intensity to adhesion strength was clear, the relatively high 
affinity interactions led to the contact areas working as perfect traps, further confounding the equilibrium 
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treatments of the data. McConnell’s lab examined the interaction of live cells with supported lipid bilay-
ers (SLB) with laterally mobile anti-DNP IgE attached to haptenated phospholipids and found that despite 
the planar nature of the surface, the FcR that bound to the mobile IgE in an interface underwent discrete 
clustering similar to what was observed with antibody crosslinking (Balakrishnan et al., 1982). These first 
observations of microclusters opened a possibility to measure affinities with careful measurement as the 
laterally mobile IgE was only constrained by Brownian motion in the SLB and its clustering would then only 
be controlled by the affinity for the FcR and the physical confines of the cell-SLB interface. Transmembrane 
adhesion molecules were immobile in SLB, probably because the cytoplasmic domains interacted with the 
underlying glass (McConnell et al., 1986). We utilized SLB to reconstitute purified CD58, which was natu-
rally glycolipid anchored through a co-translational modification, and was laterally mobile in the SLB system 
similar to the lipid haptens used by McConnell’s group (Dustin et al., 1987a; Dustin et al., 1987b; Chan et al., 
1991). I was able to label CD58 with a fluorescent dye while protecting the CD2 binding site with the blocking 
monoclonal antibody and reconstituted the labeled protein in SLB. The fluorescent signals in the SLB could 
then be calibrated to molecules/μm2 and images were acquired of cells adhering to the bilayers at three densi-
ties of CD58. These images were used to measure the total (inside contact) and free (outside contact) specific 
fluorescence intensities to calculate the bound CD58 in the contact area (total minus free) for many cells at 
each CD58 density. The system reached a steady state based on the time-course of contact area development 
and fluorescence accumulation, making an equilibrium assumption possible. Unlike LFA-1-ICAM-1 interac-
tion, which had a linear temperature dependence (Marlin and Springer, 1987), the CD2-CD58 interaction 
worked best at low temperature, consistent with a reliance on self-assembly processes that needed to suppress 
thermal fluctuations of the membrane (Dustin et al., 1987a). The contact areas were roughly circular, suggest-
ing that each contact area existed as a separate, energy minimized physical phase defined by the alignment 
of the two bilayers. Rearrangement of this data as a Scatchard Plot, which is simply a linearization of the 
mass action equations for N receptors, reversibly binding to ligands over a range of ligand concentrations 
with measurements of the receptor-ligand complexes at equilibrium (Scatchard, 1949), led to the estimation 
of a 2D Kd (Dustin et al., 1996). The use of the Scatchard plot assumes that the CD2 molecules on the cells 
are all accessible to CD58 and that the system is at equilibrium. An alternative analysis that assumed mass 
action driven, diffusion-mediated concentration of the mobile fraction ( f ) of CD2 through interactions with 
CD58 in the contact area, diffusion of free CD2 over the entire cell surface, and empirically corrected for 
partial exclusion of free CD58 from the contact area yielded lower Kd values (higher 2D affinity) but similar 
conclusions as many of the refinements had offsetting effects on the final value of the 2D Kd (Zhu et al., 2006; 
Dustin et al., 2007; Zhu et al., 2007). The conclusion was that the CD2-CD58 interaction led to self-assembly 
of ordered interfaces that were strikingly similar to theoretical predictions by Bell and colleagues for the sim-
plest type of adhesion system (Bell, 1978; Bell et al., 1984). For me, it was a beginning to think about highly 
polyvalent adhesive interfaces in quantitative terms. There were also some fascinating issues regarding how 
contacts formed on the fluid bilayers, what determined the contact area in the absence of traction, and how 
forces exerted on the individual interactions were distributed. The individual interactions appeared to be 
highly dynamic and to undergo rapid exchange of CD2 bound CD58 ligands between the contact area and 
surrounding bilayer (Dustin, 1997), and modeling these interactions suggested hundreds of rebinding events 
with multiple CD2 before a CD58 dark CD58 would diffuse out of the typical adhesion zone (Tolentino et al., 
2008). We also worked with Byron Goldstein to model the ability of the CD58-Fc chimera to bridge CD2 on 
effector T cells to CD16 on NK cells to mediate deletion of effector T cell (Dustin et al., 2007). The deletion of 
effector T cells by a drug based on the CD58-Fc chimera (alefacept) was the basis for the first biologic drug 
approved to treat psoriasis. A limitation of the mathematical modeling was that we could not accurately pre-
dict the number of CD58-Fc bridges that were formed from the total number of laterally mobile CD2 on the 
effector T cells. The model overestimated the number of bridges formed by >5 fold. Given that this Fc receptor 
mediated killing remains an important mechanism for many antibody based biologic drugs (Zhang et al., 
2003), it would be useful to understand what assumptions lead to this error and to determine if this suggests 
new regulatory mechanisms that control the number of FcR that are engaged in such settings.

This line of research also led to reconstitution of the helper T cell immunological synapse within a few 
years (Grakoui et al., 1999), but an important common thread in this work is developing models in which 
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quantification is feasible and biological function (e.g., T cell activation in the case of the immunological syn-
apse) can be achieved.

18.1.3 �W hat is the immunological synapse

The first connection of “immune” and “synapse” in the literature is the above referenced monogram in 1984 
in which some commonalities between immune recognition and synaptic communication of neurons are 
highlighted (Norcross, 1984). The concept proposed was that the TCR might act as a Ca2+ channel to activate 
directed secretion across the adhesion-bridged gap—not unlike a neural synapse. This model was initially 
conceived for cytotoxic T cells, for which the concept of Ca2+ dependent secretion of pore-forming proteins 
with a requirement for adhesion molecules like LFA-1 was just emerging in 1984. In the absence of specific 
further data for an organized interface, the concept then lay fallow. Subsequent work on the antigen recep-
tor and adhesion molecules revealed some puzzling structural details regarding the size of the molecules as 
they were cloned, evolutionary relationships revealed, and structures elucidated. LFA-1 was found to be a 
member of the integrin family (Hynes, 1987) and ICAM-1 was composed of five tandem immunoglobulin-
like domains (Staunton et al., 1990). These were each ~20 nm long—thus potentially spanning up to 40 nm 
between cells. The cloning of the TCR and structure of the MHC-peptide complex that provided a basis for 
immunological specificity of T cells were about 7 nm each—spanning a gap of ~13 nm (Davis et al., 1984; 
Bjorkman et al., 1987). CD2 and CD58 were each composed of two tandem Ig-like domains and appeared to 
bridge a gap similar in size to the interaction of TCR and MHC-peptide (Seed and Aruffo, 1987). The CD45 
tyrosine phosphatase appeared much larger than the TCR-pMHC interaction (Cyster et al., 1991) but was 
inextricably linked to signaling in both positive and negative ways (Koretzky et al., 1990). Springer sketched 
out a possible two-tiered contact interface in which TCR-MHC-peptide and CD2-CD58 interactions would 
share one region and the LFA-1-ICAM-1 interaction and CD45 would occupy an adjacent region separated by 
a region of membrane bending (Springer, 1990). I was in Springer’s lab when this model was formulated, and I 
recall being very skeptical about it at the time, in part because integrin mediated contacts had been shown by 
electron microscopy to create very close contacts—even occlusive seals that allow extracellular acidification 
and the protection of by-stander cells from leakage of cytotoxic agents (Wright and Silverstein, 1984; Schmidt 
et al., 1988). This issue of integrin mediated close contacts has resurfaced recently and has still not been 
fully solved (Freeman et al., 2016). However, there are many aspects of this model that have held up admira-
bly. In support, Davis and van der Merwe have provided extensive theoretical and experimental support for 
the importance of CD45 exclusion from close contacts (Davis and van der Merwe, 1996; Wild et al., 1999; 
Choudhuri et al., 2005; Chang et al., 2016). Furthermore, I contributed key data in support of this vision. We 
showed that CD2-CD58 interactions segregate from LFA-1-ICAM-1 interactions in the well controlled SLB 
system (Dustin et al., 1998). Analysis of this segregation process has later been utilized to derive estimates of 
relative affinities for the two adhesion systems (Burroughs et al., 2011). We went on to reconstitute the seg-
regation of LFA-1-ICAM-1 interactions from the TCR-MHC-peptide interactions (Grakoui et al., 1999). Our 
movies of T cell interactions with SLB containing ICAM-1 and agonist MHC-peptide complexes strikingly 
reconstituted the supramolecular activation clusters (SMACs) visualized for the first time by Kupfer and 
colleagues in antigen specific T cell-B cell interfaces (Monks et al., 1998). The micron scale bull’s eye pattern 
created a structural definition for the immunological synapse (Bromley et al., 2001b). In both of these stud-
ies, the TCR-MHC-peptide interactions in the central (c)SMAC were segregated from the LFA-1-ICAM-1 
interactions in the surrounding peripheral (p)SMAC (Figure 18.1). Griffiths and colleagues redefined the 
cSMAC as including a secretory domain targeted by the granules released by cytotoxic T cells (Stinchcombe 
et al., 2001). Many other cell types including natural killer cells (Davis et al., 1999), B cells (Batista et al., 2001), 
mast cells (Carroll-Portillo et al., 2010), and phagocytes (Goodridge et al., 2011) shared this basic organiza-
tion. Many of these systems shared the bull’s eye architecture, but seemed to adapt this to specific functions. 
However, the bull’s eye of antigen receptor and adhesion molecules was too narrow a definition to accom-
modate all of the relevant biology.
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18.1.4 �D efinition of immunological synapse

While the bull’s eye structure was a common motif, particularly with SLB reconstitution models, it was clear 
that there was a great heterogeneity of structures and T cell behaviors associated with antigen recognition and 
other types of immune recognition (Brossard et al., 2005; Tseng et al., 2008). There is not a wide consensus 
on how to define an immunological synapse. We have tried to be consistent in the following criteria (Dustin 
and Colman, 2002):

	 1.	 The neuron doctrine—cells remain individuals.
	 2.	 Adhesion.
	 3.	 Stability.
	 4.	 Directed secretion.

Stability is a difficult criterion as its definition is relative and needs a time frame. For example, T cells that form 
stable interactions with motile B cells in vivo such that they move relative to the tissue but can remain con-
nected to each other for hours (Okada et al., 2005), are forming a synapse. Thus, we would say the spatial frame 
of reference should be the APC when considering stability. T cells move rapidly in the steady state, as I will 
discuss later: thus, suspending motility for minutes to hours is a significant change that constitutes stability. 
Functionally, a few minutes may be sufficient for a cytotoxic T cells to deliver a “lethal hit” (Isaaz et al., 1995), 
whereas hours is the time frame for signal integration needed to prime a naïve T cell and program it for mul-
tiple rounds of division (Mayya and Dustin, 2016). If closely aligned interfaces with immunological specificity 
occur between clearly moving cells, we refer to this as a kinapse, for moving junction (Dustin, 2007; Sims et al., 
2007; Azar et al., 2010; Moreau et al., 2015). Recently, we have demonstrated that the kinapse mode of interac-
tions does not preclude a durable interaction with a spatially restricted source of pMHC (Mayya et al., 2018).

18.1.5 �T he context of the T cell immunological synapse

The immunological synapse concept has been useful in the study of a number of disease states and thera-
peutic modalities. Two of these are autoimmunity and cancer immunotherapy. Antigen specific therapy of 
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Figure 18.1  Wishlist for immunological synapse.  Imaging the immunological synapse on SLB involves combining 
three to four fluorescence channels to identify the three SMACs. The composite image at the bottom combines 
ICAM-1 on the SLB, anti-TCR Fab on the T cell surface and ZAP-70 imaged in TIRF mode on the cytoplasmic 
surface of T cell plasma membrane recruited to TCR microclusters. The brightest TCR signal defines the cSMAC, 
the brightest ICAM-1 signal marks the pSMAC, and the outermost TCR-ZAP-70 microclusters mark the dSMAC. 
Quantitative models will help address the outstanding questions.
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autoimmune disease is an important goal that offers the hope of a cure, rather than current chronic, generally 
immunosuppressive therapies (Feldmann and Steinman, 2005). Thus far, the pathogenic T cells in autoim-
munity disease settings including type 1 diabetes and multiple sclerosis form defective immunological syn-
apses (Schubert et al., 2012). As one function of the cSMAC is to turn off TCR signals (Lee et al., 2003a; Campi 
et al., 2005; Vardhana et al., 2010), the failure to form a cSMAC may make a T cell more difficult to regulate. 
The flip side of this coin is the ability to enlist the immune response to fight cancer and chronic infection, situ-
ations where tolerance mechanisms that protect most of us from autoimmune disease may increase our sus-
ceptibility to some infections. The excitement in cancer immunology is largely driven by biologics that target 
and modulate the immunological synapse between T cells and cancer cells or lead to formation of synthetic 
synapses based on T cell engineering (Egen and Allison, 2002; Porter et al., 2011; McCormack et al., 2013; Wu 
et al., 2015). There is thus enormous potential in being able to predict immunological synapses and to be able 
to incorporate these predictions into larger simulations of immune system performance.

18.2 � MOLECULAR SEGREGATION

18.2.1 � Back of the envelope to sticky details

The speculation by Springer (Springer, 1990) regarding transmembrane tyrosine phosphatase CD45 exclu-
sion from sites of TCR engagement and refinement of this model by Davis and van der Merwe with respect 
to CD2 (Davis and van der Merwe, 1996) and Shaw and myself with respect to co-stimulation more gener-
ally (Shaw and Dustin, 1997) assumed that large proteins would naturally be excluded from close contacts. 
Engineering of adhesion molecules, MHC molecules, and CD45 itself supported this notion (Wild et al., 
1999; Choudhuri et al., 2005; Varma et al., 2006; James and Vale, 2012). Work from Grinstein’s lab has rein-
forced the earlier mentioned observations that integrin can create contacts that exclude CD45 in a manner 
requiring the actin cytoskeleton (Freeman et al., 2016). In addition, the forces controlling CD45 lateral dis-
tribution are complex and may include not only exclusion, but also attractive interactions with Lck kinase, a 
substrate of CD45, enriched membrane domains that might work against the size based exclusion (Irles et al., 
2003). Two studies reported transient exclusion of CD45 from close contact regions followed by enrichment 
without an obvious change in intermembrane separation, which raises questions about whether observed 
exclusion was really only based on size or also depended on other factors (Freiberg et al., 2002; Choudhuri et al., 
2005). Thus, a method for isolating effects of intermembrane spacing on exclusion of surface protein of vari-
ous sizes was needed.

Giant unilamellar vesicles offer an approach to isolate the relation of intermembrane spacing to exclusion 
of proteins of different relative sizes without an active cellular component and on a relevant length scale of 
micrometers (Reister-Gottfried et al., 2008; Schmid et al., 2016). Schmid et al. utilized synthetic adhesion sys-
tems based on green fluorescent protein (GFP) and mCherry oligomers to look at exclusion of proteins from 
area of close intermembrane apposition (Schmid et al., 2016). Using experimental and simulation approaches 
they were able to define a parameter, the intermembrane-protein gap, which was positive when the protein 
was smaller than the gap and negative when the protein is larger than the gap. The gap estimate in this case 
came from simple models with full extension of proteins. Proteins with positive gaps of greater then 10 nm 
were not visibly excluded, whereas proteins with negative gaps of 5 nm or greater were optimally excluded 
(Schmid et al., 2016). Interestingly, the proteins with 0 nm intermembrane protein gap sat at the inflection 
point—showing half-maximal exclusion (Schmid et al., 2016). A paired-lattice based simulation could cap-
ture the key features, including partial exclusion at a 0 nm gap. Thus, molecules that just appear to “fit” 
can still be partly excluded by steric conflicts and entropic penalties related to interactions with the closely 
apposed, thermally fluctuating membrane. More recently, studies with GUV-SLB interfaces using extracel-
lular domains of the TCR and pMHC have directly demonstrated partial CD45 exclusion (Carbone et al., 
2017). These studies provide a physical basis for CD45 exclusion by size and a notion of binding energy that 
would be needed to counteract this effect in the context of regulated T cell activation, as mentioned above.
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18.2.2 �T wo-dimensional affinity and kinetic rates-out 
of equilibrium

The thermodynamic underpinning for cells adhesion was well outlined by Bell in 1978, as mentioned above 
(Bell, 1978). He envisioned the formation of adhesive junctions by low affinity receptor ligand pairs (3D Kd 
~1–10 μM) that would interact in hundreds or thousands/μm2 with a “confinement length” ~1 nm deep. Bell 
and colleagues defined the confinement length, σ = 2D Kd ÷ 3D Kd. σ is a phenomenological parameter that 
will be discussed further below. We performed measurements on the interaction of live T cells expressing 
CD2 with supported planar bilayers containing different densities of laterally mobile, fluorescent CD58 and 
obtained equilibrium binding data that perfectly fulfilled Bell’s expectations for a simple adhesion system 
(Dustin et al., 1996; Dustin et al., 1997b; Dustin et al., 2007). Molecular dynamic simulations that incorporate 
adhesion molecules and phospholipids of apposed membranes suggest that σ can be broken down into terms 
of translational and rotational entropy and membrane roughness, which is measured in nm (Hu et al., 2013).

Immune cell antigen recognition and costimulation is dominated by interactions that span an intermem-
brane gap of ~12–13 nm (the length of three Ig-like domains). Why is this? Some clues have come from experi-
ments that increase the length of CD2 ligands. Initial efforts in this direction were focused on understanding 
the role of CD45 exclusion and did not address any change in adhesion efficiency, because ligands were over-
expressed and no titration was performed to evaluate if adhesion efficiency was increased or decreased by 
making one of the molecules longer (Wild et al., 1999). Also, there was an earlier notion from studies of 
erythrocyte adhesion to T cells that the small size of the CD2-CD58 adhesion molecules made them sensitive 
to inhibition by charge based repulsion between cells, and the general thought was that extending adhesion 
molecules might make them better. Early studies, however, suggested that there was actually an offsetting 
disadvantage to making CD2 ligands longer at physiological temperature (Selvaraj et al., 1987; Chan and 
Springer, 1992). Using purified versions of extended CD2 ligands in SLB, we later learned that adding two 
or three Ig-like domains resulted in a 10-fold deterioration in the 2D affinity (Milstein et al., 2008). Adding 
each Ig domain added ~4 nm in size to the protein, but only increased the intermembrane spacing by 1 nm 
per Ig-domain, as found previously for pMHC based synthetic adhesion systems (Choudhuri et al., 2005). 
This suggests that adding Ig-domains beyond the three-domain span of the wild type pair (the N-terminal 
domains of CD2 and CD58 overlap when interacting) increases tilting of the receptor-ligand pair to allow a 
shorter intermembrane distance. The increase in length of CD2 ligands apparently increased σ by ~10-fold. 
As discussed above, this parameter incorporates translational and rotational entropy differences and thermal 
membrane roughness. If this is the case, then how do larger adhesion molecules like E-cadherin, which is five 
domains long and interacts primarily through the N-terminal domains spanning ~40 nm if fully extended, 
work in cell-cell junctions? It seems that E-cadherin overcomes this in two ways. First, the binding of Ca2+ 
between the domains rigidifies the molecule and this may contribute to reducing σ (Pokutta et al., 1994) Second, 
simulations indicate that the large entropy loss associated with trans binding of the E-cadherin is offset by cis 
interactions, which minimize σ by nucleating a 2D lattice (Wu et al., 2011). While cadherin junctions sometimes 
appear highly ordered in electron micrographs (Harrison et al., 2011; Le Bihan et al., 2015), experimental veri-
fication of this lattice structure is still pending. It is not clear how other large adhesion receptors like integrins 
manage σ, although one solution may be to have a high on-rate and somewhat higher binding affinity or force-
dependent allostery (catch bonds) to offset larger σ values (Zhu et al., 2008; Chen et al., 2012).

Many receptors bind to multiple ligands that may generate different intermembrane separations, for 
example, CD6-ALCAM and ALCAM-ALCAM (Chappell et al., 2015). While potential competition in this 
system has not been explored, the interaction of CD2 with engineered ligands of different sizes leading to 
differences in intermembrane separation of only 2 nm (or 15%) resulted in lateral phase separation in contact 
areas (Milstein et al., 2008). Finding single contact areas with coexisting small and large separation phases 
was technically difficult because the vast majority of contacts were either all small or all large separation 
phases in experiments that were near the tipping point for the competition between the small and large 
ligands (Milstein et al., 2008). A model for this process predicted that coexisting phases were impossible at 
equilibrium and that interaction of the single receptor with one of the small or large ligands would always 
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dominate a single contact area given sufficient time (Krobath et al., 2011). Thus, the rare situations where we 
observed phase separation within a contact probably arose from discrete nucleation events with the long and 
short ligands and once merged into one contact would move toward dominance by one pair or the other if 
given sufficient time. Thus, the model predictions explained our difficulty of finding examples of single con-
tacts with co-existing long and short ligand interactions with one receptor (Krobath et al., 2011). In a biologi-
cal situation the relative expression level of long and short ligands of a single receptor is predicted to act in a 
switch-like manner to favor one ligand.

In an article in 1991, Alan Williams commented on immunologist’s fascination with affinity, an equilib-
rium concept, in immunological settings that are kept out of equilibrium by forces of blood flow and endocy-
tosis (Williams, 1991). While 2D affinity is discussed in the context of the immunological synapse (Grakoui 
et al., 1999; Huppa et al., 2010), these systems are clearly kept out of equilibrium by many energy dependent 
processes such that even if the 2D affinity is allowed to vary locally, any calculation that depends on equilib-
rium assumptions may be misleading. This is not to say that measurements are not valuable. The adhesion 
frequency assays pioneered by Zhu and colleagues utilize very dilute ligands on the surface of an ultrasoft 
red blood cell to probe for bond formation on the surface of a cell of interest (Chesla et al., 1998). The condi-
tions are titrated to avoid progression to multivalent interactions and ideally reach an “equilibrium” between 
formation and breakage of single bonds with a sufficiently long test period in a defined contact area. The ideal 
scenario for analysis of this type of data would be for recombinant proteins attached to two RBC that are used 
to test each other, as the contact area between the smooth, soft surfaces would be straightforward to deter-
mine. The Zhu lab has shown that recombinant FcR bound to RBC surface shows a 50-fold higher on-rate 
than the same protein attached to the surface of CHO cells (stromal cells with an irregular surface) (Williams 
et al., 2001). This suggests that there is a 50-fold reduction in real contact area compared to the apparent con-
tact due to surface roughness. It should be noted that the surface roughness associated with the surface of a 
lymphocyte can be measured in 10s or 100s of nm, rather than ~1-10 nm as in the ordered contacts mediated 
by CD2-CD58 interactions. The adhesion frequency and related biomembrane force probe experiments have 
been used to assess the interaction of RBC bound MHC-peptide complexes to TCR on live T cells (Huang et al., 
2010; Liu et al., 2014). In contrast to the example above, the on-rate for MHC-peptide encounter with TCR is 
five-fold greater on a T cell than when recombinant TCR is attached to an RBC (Liu et al., 2015). One way to 
interpret these results is that the distribution of the TCR on T cells improves the effective on-rate by 250-fold 
(if we assume similar 50-fold reduction in actual surface contact as for CHO cell). Accordingly, when the 
native membrane organization of the T cell was disrupted with latrunculin A or cholesterol oxidation, the kon 
was reduced 20- to 100-fold. A recent 3D super-resolution microscopy study suggests that the TCR is concen-
trated on the ends of small projections on the T cell surface (Jung et al., 2016). Such concentration of TCR on 
projections that are most likely to make contact with an antigen-presenting surface is expected to increase 
the kon. 3D measurements tend to emphasize correlation of activation with off-rates. There is currently con-
troversy as to whether in situ off-rates will be the same, greater than, or equal to the 3D off-rates (Huppa et al., 
2010; O’Donoghue et al., 2013; Liu et al., 2014). The dwell-time, a parameter that incorporates both kon and 
koff, may take on greater significance in membrane interfaces as increasing kon makes re-binding more likely. 
Such serial molecular interactions may be functionally similar to a single longer interaction (Klammt et al., 
2015). Its likely that different, complementary approaches to single bond measurements will be needed to 
address outstanding issues that account for the sensitive and rapid nature of TCR recognition and triggering.

18.2.3 �E mergent patterns

Initial models for the immunological synapse bull’s eye focused on the role of the actinomyosin system in 
moving TCR complexes inward in a process related to the earlier described “capping” and adhesion systems 
being displaced outward (Grakoui et al., 1999; Dustin and Cooper, 2000). However, it was also suggested that 
the self-assembly processes related to the drive for receptor segregation could also contribute to this process 
(Qi et al., 2001). The self-assembly models could account for some differences in T cell response by TCR-
pMHC interactions of different kinetics (Lee et al., 2002; Weikl and Lipowsky, 2004) and were further coupled 
to underlying signaling networks to further predict T cell responses (Lee et al., 2003b; Cemerski et al., 2007). 
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The role of the actinomyosin system was further reinforced by higher resolution studies that broke the SMACs 
down into smaller microclusters and thus decreased the length scales for relevant membrane bending events 
(Mossman et al., 2005; Varma et al., 2006; Kaizuka et al., 2007) (Figure 18.1). Mathematical models for syn-
apse patterning through introduction of diffusion barriers in the bilayer made further specific predictions 
about how patterned bilayers would impact synaptic patterns formed by different mechanisms (Figge and 
Meyer-Hermann, 2006). More recently, it has become clear that the actinomyosin cytoskeleton is not the only 
contributor to T cell activation and synaptic patterning (Ilani et al., 2009; Kumari et al., 2012), but that the 
microtubule based transport (Hashimoto-Tane et al., 2011) and the endosomal sorting complexes required 
for transport (ESCRT) (Vardhana et al., 2010) are also important for establishing patterns. While microtu-
bule based transport was well known to deliver intracellular vesicular cargo to the center of the synapse, the 
ESCRT machinery was shown to extrude TCR enriched extracellular vesicles into the cSMAC (Choudhuri 
et al., 2014). The extracellular vesicles fundamentally change the topology of the synapse to one in which the 
cSMAC develops a large separation between the T cell and antigen presenting substrates to accommodate the 
60-200 nm extracellular vesicles, or synaptic ectosomes (Dustin, 2014b, a). This large central cleft may also be 
contributed to by exocytic events related to directed secretion. This new element has yet to be incorporated 
into self-assembly models with regards to how it impacts cSMAC formation and interpretation. However, it is 
too early to conclude that all cSMACs are filled with extracellular vesicles as the initial studies mostly focused 
on full agonist pMHC, and weak agonists at high densities can also form cSMACs. The function of the extra-
cellular vesicles is currently a mystery, but similar vesicles released by regulatory T cells have been implicated 
in the ability of these cells to control the activity of other T cell types through transfer of microRNAs (Okoye 
et al., 2014). A recent study has demonstrated that the helper T cells transfer CD40L to B cells in a TCR signal-
ing and CD40 dependent manner. This study has suggested that helper T cells release CD40L in extracellular 
vesicles (Dustin, 2017; Gardell and Parker, 2017).

The behavior of the CD2-CD58 and CD28-CD80 system in the synapse has also remained somewhat 
enigmatic. As described above, CD2-CD58 was expected to co-localize with the TCR-pMHC recognition 
in the immunological synapse, but initial studies suggested that CD2-CD58 interactions strongly segregate 
from both the LFA-1-ICAM-1 and the TCR-pMHC interactions in the periphery of the synapse (Grakoui 
et al., 1999). The CD2-CD48 (the ligand for CD2 in rodents is CD48) interactions were further concentrated 
in the pSMAC, although still segregated from LFA-1-ICAM-1 interactions (http://www.sciencemag.org/site​
/feature/data/Grakoui/1040037s1_large.jpeg). It was also shown that CD2-CD58 interactions on their own 
induced a partial TCR signal when engaged by CD58 in bilayers or proteins micelles (Bockenstedt et al., 1988; 
Dustin et al., 1989; Kaizuka et al., 2009). The CD28-CD80 interaction appeared to partially overlap with TCR 
in early wide-field imaging studies (Bromley et al., 2001a), but with improved axial resolution it became clear 
that there was typically a highly TCR-pMHC enriched core surrounded by a CD28-CD80 enriched, TCR-
pMHC intermediate collar in the cSMAC (Tseng et al., 2008; Yokosuka et al., 2008). Protein kinase C-θ was 
strongly recruited to this CD28 rich collar (Yokosuka et al., 2008). TCR movement from this collar domain 
into the core, which corresponds to extracellular vesicle formation, is mediated by the ESCRT machinery and 
appears to promote sustained co-stimulation (Vardhana et al., 2010; Choudhuri et al., 2014). Thus, while we 
have some understanding of the mechanism by which the CD28-CD80 costimulatory collar of the cSMAC is 
formed, it is not clear why CD2-ligand interactions segregate from the TCR and compete with LFA-1-ICAM-1 
interactions for space in the synapse periphery.

18.2.4 �S ynapses and kinapses

Different model systems have been utilized to study the formation of immunological synapses and kinapses. 
The classical studies of Kupfer mostly focused on the D10 T cell line interacting with transformed B cell lines 
presenting conalbumin peptides to generate the famous bull’s eye pattern with a ring of LFA-1 surrounding 
a central cluster of TCR (Monks et al., 1998). Live cell imaging from the Davis lab similarly employed B cell 
tumors as APCs, although they typically utilized primary T cells (Wulfing et al., 1998). We observed that 
functional reconstitution of T cell activation with SLB containing ICAM-1 and agonist MHC-peptide recon-
stituted the bull’s eye pattern defined by Kupfer (Grakoui et al., 1999). A challenge to the view of a radially 

http://www.sciencemag.org
http://www.sciencemag.org
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symmetric and stable synapse was mounted by Gunzer and colleagues using a collagen gel model, in which 
T cells migrated continuously on antigen presenting dendritic cell networks without stopping (Gunzer et al., 
2000). In vitro studies with dendritic cells emphasized a multifocal pattern of receptor clustering and greater 
dynamics, perhaps reflecting the dramatic dynamics of the dendritic cell surface (Donnadieu et al., 1994; 
Brossard et al., 2005; Tseng et al., 2008). These studies suggested a limit of sort for in vitro studies and required 
a “reality check” with in vivo analysis of the range of physiological interactions to better set the goals for in 
vitro reconstitutions.

18.3 � IN VIVO VERITAS AND BLUEPRINT FOR IN VITRO STUDY 
DESIGN

18.3.1 �I ntravital microscopy studies

In vitro model systems that allow quantitative data to be obtained are invaluable, but eventually we want 
to take these elements back into an in vivo setting, which has been a major goal of intravital microscopy 
studies over many decades (Arfors et al., 1969; Miller et al., 2002). Another important axiom is that quan-
titative analysis of in vivo immune system dynamics provides a blueprint for design of in vitro platforms 
(Lawrence and Springer, 1991; Woolf et al., 2007). Two-photon laser scanning microscopy enables tracking of 
cell dynamics in intact tissues ex vivo (organ cultures) or in vivo. Striking work from Cahalan and colleagues, 
initially in explants but then in vivo, revealed rapid T cell and B cells movement through lymphoid tissues at 
~12 μm/min and 5 μm/min, respectively, in the steady state (Miller et al., 2002). Against this highly dynamic 
steady state, priming by dendritic cells was shown to involve dramatic deceleration over a period of hours, 
suggesting a dramatic change in the mode of interaction triggered by antigen recognition (Stoll et al., 2002; 
Bousso and Robey, 2003; Mempel et al., 2004; Shakhar et al., 2005). The scenario described by Gunzer and 
colleagues in collagen gels appeared to correspond most closely to some modes of antigen specific tolerance 
induction in vivo, which proceed without any T cell deceleration as long as the weak agonist antigens are 
distributed throughout the lymphoid tissue (Hugues et al., 2004; Skokos et al., 2007). Priming T-DC inter-
action in vivo involved dramatic deceleration and local confinement of the T cell, but detailed observations 
suggested continued local exploration by antigen specific T cells (Azar et al., 2010). Priming of naïve T cells on 
SLBs revealed a T cell autonomous program of symmetry breaking and relocation that paralleled dynamics 
in vivo and was promoted by activity of PKCθ (Sims et al., 2007). We referred this slow exploration of the DC 
that was distinct from the rapid steady state migration as a kinapse, for “moving junction” (Dustin, 2007). 
There is a debate as to whether the kinapse is a discrete mode of interaction or part of a continuum, but recent 
data suggest that steady state migration is largely integrin independent, whereas the kinapse mode is distin-
guished by its integrin dependence and large contact area (Woolf et al., 2007; Moreau et al., 2012; Moreau 
et al., 2015). It will be important to understand the implications of this T cell behavior during priming and 
how these relate to similar data on T-APC interactions in later stages. The best evidence at this point is for 
stable synapses to play an important role in effector function in defense against pathogens (Waite et al., 2011) 
and cancer (Ruocco et al., 2012), but also in immunopathology (Shaw et al., 2015). Even in effector phases, it 
has been suggested that serial hits from rapidly moving cytotoxic T cells may be as good a strategy for target 
killing as a single stable synapse (Halle et al., 2016). Dynamic interactions of CTL in tissues have also been 
associated with immunopathology (Kim et al., 2009), and arrest of these cells in a PD-1 dependent paralytic 
synapse is an evolved solution to this challenge of pathogens that attach vulnerable niches (Zinselmeyer et al., 
2013). Development of appropriate models should help to shed light on optimizing interaction strategies for 
different functions.

18.3.2 �S earch strategies

In vivo microscopy studies dramatically changed the models for how immune cells searched for their targets. 
Cahalan and colleagues proposed a random search that was well modeled by Brownian motion, such that a 
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T cell could be described to diffuse in the T cell zone in its search for APCs with individual DC contacting 
up to 5000 T cells per hour (Miller et al., 2003; Miller et al., 2004). Optimizing such a search process is a 
fantastic modeling problem. The biological scaffold for T cells and DC organization is a remarkable stromal 
cell network that is induced within mucosal tissues and the lymphatic and the vascular systems by innate 
lymphocytes (Mebius, 2003). These cells create a unique 3D tissue space supported by a enclosed collagen 
bundle network and the stromal cells also produce chemokines that stimulate T and B cell motility in differ-
ent compartments (Ebnet et al., 1996; Bajenoff et al., 2006). While T and B cell movement can give a linear fit 
in a mean-square displacement plot, this is a relatively weak test for correlated behavior that might suggest 
more sophisticated search strategies. Within T cell zone its been shown that activated dendritic cells that have 
been helped by CD4 T cell produce chemokines that induce local swarming of CD8 T cells to increase the 
chance for encountering cells within that subset (Castellino et al., 2006). Inflammatory chemokines may also 
help to concentrate memory T cells in locations where they will have a first look at entering DC (Kastenmuller 
et al., 2013). It has also been proposed that T cells use Levy walks to find pathogens in a tissue setting, a 
strategy in which directional changes are random, but the distance moved prior to the next changes in direc-
tion is taken from a power law distribution (Harris et al., 2012). These longer runs interspersed with more 
extensive searches allow more unique area to be investigated. However, the movement of T cells in lymphoid 
tissues is better approximated by a composite-correlated random walk (Beltman et al., 2007). Furthermore, 
it has become clear from genetic experiments that the turning angle distribution is not determined entirely 
by lymph node architecture, but is also regulated by specific gene products in the T cell (Gerard et al., 2014). 
Because correlated random walks can approximate Levy walks, its possible that T cells will always use a com-
bination of environmental cues and cell autonomous strategies to regulate their searching behavior in the 
absence of explicit chemotactic information—an area ripe for modeling.

18.4 � SYSTEMATIC ANALYSIS

18.4.1 �S ystematic analysis of cell-cell synapses

An important future direction for analysis of the immunological synapse is to take advantage of powerful 
genetic tools like shRNA and CRISPR libraries and high content screens to get a more comprehensive view 
of the immunological synapse. Wuelfing and colleagues have performed some impressive screens with cel-
lular systems to investigate signaling proteins (Singleton et al., 2011). Automating the image processing and 
classification of the synapses will facilitate these studies. Its possible that guiding such analysis with models 
for the 3D structures would facilitate orientation and classification of images. Most cell-cell conjugates are 
viewed from the side, and this information about the depth of various signals in the cytoplasm of the apposed 
cells can be useful. However, rapid analysis of synapse patterns also benefits from end-on views with signifi-
cant throughput. A low throughput approach to this is to use a laser trap to orient the conjugates, which was 
successful in generating an en face view of the IS in cell-cell conjugates that could be scanned with a confocal 
microscope (Oddos et al., 2008). Somewhat higher throughput, but lower loading efficiency, was obtained 
using micropit arrays, but this is only feasible if cells are plentiful and of similar size (Biggs et al., 2011). A 
microfluidic-based system that combines the micropit approach with a mechanism to specifically capture 
the second cell looks promising (Jang et al., 2015). Combining a robust positioning methodology with a high 
resolution and high-speed methods like lattice light sheet microscope could put cell-cell imaging on a more 
even playing field with imaging cells at interfaces with glass substrates (Ritter et al., 2015). Since the cell-cell 
setting is undoubtedly closer to nature, closing this gap substantially would be a major advance.

18.4.2 �S olid phase ligand presentation

The most accessible and effective T cell activating substrates for most researchers are beads or planar sur-
faces coated with anti-CD3 and anti-CD28 antibodies. The formation of TCR microclusters and trans-
location of SLP-76 based signaling complexes are well documented on these substrates, although these 
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phenotypes are strongly modulated by addition of adhesion molecules like ICAM-1, VCAM-1, or fibronec-
tin (Bunnell et al., 2006; Nguyen et al., 2008). While sub-optimal for pattern formation that requires ligand 
mobility, these substrates have the potential advantage in that several large gene expression studies have 
utilized these substrates to provide standardized T cell stimulation and costimulation (Ciofani et al., 2012; 
Yosef et al., 2013). Magnetic beads coated with anti-CD3 and anti-CD28 are also a standard for expan-
sion of human T cells in clinical protocols for immunotherapy, such that understanding T cell responses 
to these substrates is of significant practical interest (Levine et al., 1997). Better models for how synapses 
are patterned on immobile substrates and how information can be mapped between easy to establish 
solid phase substrates and more fragile SLB systems would help speed analysis. Some concerns have been 
raised about the non-specific activation potential of highly interactive surfaces like poly-L-lysine coated 
glass (Chang et al., 2016). I have spent many years working on developing planar substrates that optimize 
imaging parameters while retaining biological specificity (Dustin and Springer, 1989; Dustin et al., 1997a; 
Grakoui et al., 1999). Therefore, while great care is needed, I remain convinced that such substrate based 
system will generate useful quantitative data so help gain a deeper understanding of in vivo and in vitro 
cell-cell interaction data.

18.4.3 �H igh throughput analysis on SLB
SLBs are a complex substrate system and are somewhat cumbersome for high throughput analysis, but 
there is no doubt that robotics will be able to increase the throughput of these systems beyond the cur-
rent practice (Nair et al., 2015). Currently, a big day for my lab might be to examine 10–20 conditions in 
detail. The analysis of this data would then take weeks. The use of 96 well plates, robotic SLB assembly, 
and automated analysis can increase this throughput to 100–200 samples per day while greatly reduc-
ing the potential for human error and total time to results to two days. The use of screening microscopes 
with dry objectives (max NA of ~0.7) limits resolution, but this is adequate for scoring of supramolecular 
activation clusters at moderate densities of anti-CD3 or MHC-peptide complexes. The identification and 
analysis of cellular phenotypes may be aided by custom software development to get accurate cell counts 
and analysis of associated fluorescent signals (Mayya et al., 2015). Performing imaging-based analysis of 
small numbers of cells from patient samples is a current challenge, and methods that make efficient use 
of cells and offer reasonable throughput are needed but not currently available. One potential direction 
is nanowell technologies, which can also be used to identify synaptic phenotypes of single cells that can 
then be subjected to further analysis through micromanipulation (Torres et al., 2013). Recently, Ibidi has 
marketed microwell inserts that would allow imaging of ~1000 lymphocytes distributed over a single 20× 
imaging field (http://ibidi.com/xtproducts/en/ibidi-Labware/Open-Slides-Dishes:-Removable-Chambers​
/micro-Insert-4-Well-FulTrac).

The bottom-up approach to reconstitution of the immunological synapse has thus far investigated only 
a small fraction of the molecules expressed on the surface of antigen presenting cells that guide responses, 
mostly restricted to MHC-peptide complexes, ICAM-1 and B7 family co-stimulatory molecules, and NKG2D 
ligands (Bromley et al., 2001a; Somersalo et al., 2004; Yokosuka et al., 2012). In order to guide these investiga-
tions further, it will be of great interest to document molecules on the surface of different types of antigen 
presenting cells using quantitative methods in order to express and present these molecules on surface to test 
for function and synaptic patterning (Weekes et al., 2010). Hybrid systems in which supported bilayers with 
mobile (lipid anchored) and immobile (transmembrane) components can be easily generated would provide 
opportunities for more physiological presentation of many transmembrane proteins with both mobile and 
immobile fractions on the cell surface.

An important aspect of screening studies that focus on the immunological synapse is a data format that 
would work for investigators interested in modeling. In our work on SLB, we have a standard approach to 
calibration and report ligands densities in molecules/μm2. Methods to classify patterns and provide quan-
titative summaries of large imaging data sets will also aid modeling efforts by making data more publically 
accessible through databases, perhaps built on platforms like Omero (http://www.openmicroscopy.org/site​
/products/omero).

http://ibidi.com
http://ibidi.com
http://www.openmicroscopy.org
http://www.openmicroscopy.org
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18.4.4 �S ignaling complexes and integration

Quantitative proteomics that can generate real estimates of protein abundance are an exciting direction and 
are potentially of great value in design of bottom-up experimental programs and for parametizing model-
ing efforts. The Cantrell group has performed phosphoproteomics and total proteome analysis of cytotoxic 
T cells (Navarro et al., 2014). Putting general phosphoproteomics data into the context of supramolecular 
organization will be greatly aided by immunoisolation of molecular assemblies and their analysis by quanti-
tative proteomics. A challenge here is having reliable antibodies to signaling molecules that allow consistent 
isolation and comparison. The Malissen group has generated a series of knock-in mice in which different can-
didate signaling adapters were epitope tagged such that they could also be isolated with the same, well char-
acterized and highly specific monoclonal antibodies (Roncagalli et al., 2014). The results of such analyses can 
be extended by reconstitution on liposomes or SLBs to better mimic the in situ signaling at triggered receptors 
(Hui and Vale, 2014). These methods can be combined with patterning of SLBs and imaging to study issues of 
compartmentalization and phase separation associated with reconstituted signaling networks (Iversen et al., 
2014; Su et al., 2016). Initial efforts to couple TCR signaling to down-stream signaling did not explicitly 
take into account lateral phase separation, which we now know is also driven by extracellular interactions, 
the lipid core of the plasma membrane, and the signaling complexes in the cytoplasmic space (Dustin and 
Muller, 2016). Incorporating these principles into signaling models (Das et al., 2009; Mukherjee et al., 2013) 
should generate new opportunities to understand immune system regulation. Coupling cell surface signaling 
with signals conveyed through extracellular vesicles and cytokines will lead to integration of these inputs in 
transcriptional networks. Time courses for T cell activation in response to infection in vivo have generated a 
number of new ideas for the role of immunological synapse (Best et al., 2013). Collection of gene expression data 
in mouse and human models may generally benefit from either joining or adopting the SOPs of consortia such 
as IMMGEN, as the use of a common SOPs to collect data across the entire immune system clearly creates fan-
tastic opportunities for modeling efforts with a high confidence (Heng and Painter, 2008; Ciofani et al., 2012). 
It is likely that issues of immunological synapse duration and kinapse based integration of information from 
antigen rich clusters within lymphoid tissues will be encoded in expressed transcription factors and chromatin 
modifications (Tkach et al., 2014; Mayya and Dustin, 2016). To more explicitly connect what we know about 
events in the synapse to events in the nucleus should be an exciting area for modeling in the future.

18.4.5 �I ntegration with single cell revolution

Faster progress in human immunology has been fueled by methods that allow analysis of rare or single cells 
(Hataye et al., 2006; Brusic et al., 2014; Yu et al., 2015; Ryan et al., 2016). Single cell phenotyping incorporat-
ing both imaging and nucleic acid analysis also offers further power in relating single cell phenotypes to 
synaptic architecture (Buettner et al., 2015; Proserpio et al., 2016: Torres, 2013 #9696). For example, it should 
be possible to relate synaptic phenotypes of CD2 patterning to a response to pathogens or a susceptibility to 
autoimmune disease (McKinney et al., 2015). Such approaches will benefit from robust models for quantita-
tive hypothesis testing and should provide considerable raw material for data driven modeling.

18.5 � CONCLUSIONS

Data driven quantitative immunology will play an important role in refining the questions that we ask in 
basic immunology and our ability to take what we have learned and apply this to therapy. The acquisition of 
the data needed for this will require further efforts to standardize methods and formatting beyond initial suc-
cesses in analysis of gene expression. Efforts to “harden” the relatively soft data reporting for flow cytometry 
and imaging and making these types of data available to the community more efficiently should be a future 
goal. How successful examples of strong standard operating procedures and standards can be applied beyond 
small consortia to entire fields is a future challenge for collaborative science. I would wish for a holistic 
model that takes into account all of the relevant interactions needed to generate an immunological synapse. 
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This model could then be incorporated as an element in a larger model of the immune response that depends 
upon these elements. The benefit of such efforts will be a deeper understanding of the immune response and 
the ways in which immunological synapses and kinapses operate in decisions that impact patient health.
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